ФГБОУ ВПО «Кубанский государственный университет» Меловая комиссия МСК России Российский Фонд Фундаментальных Исследований

МЕЛОВАЯ СИСТЕМА РОССИИ И БЛИЖНЕГО ЗАРУБЕЖЬЯ: ПРОБЛЕМЫ СТРАТИГРАФИИ И ПАЛЕОГЕОГРАФИИ

Материалы Шестого Всероссийского совещания

10-15 сентября 2012 г., г. Геленджик

Под редакцией Е.Ю. Барабошкина, К.Е.Барабошкина, Н.А. Бондаренко

> Краснодар 2012

УДК 551.763(082) + 551.8(082) ББК 26.323.263я431 М 47

Редакционная коллегия:

Е.Ю.Барабошкин (гл. редактор), Н.А. Бондаренко, К.Е.Барабошкин (зам. гл. редактора), Т. В. Любимова (секретарь-референт)

М 47 Меловая система России и ближнего зарубежья: проблемы стратиграфии и палеогеографии. Сб. науч. трудов / под ред. Е.Ю. Барабошкина, Н.А. Бондаренко, К.Е.Барабошкина. — Краснодар: Изд-во Кубанского гос. ун-та, 2012. — 337 с.: ил. ISBN 978-5-8209-0814-9

Сборник содержит материалы докладов, представленных на Шестом Всероссийском совещании «Меловая система России и ближнего зарубежья: проблемы стратиграфии и палеогеографии», посвященном памяти выдающегося исследователя меловой системы Кавказа В.Л. Егояна. Рассмотрены актуальные теоретические и практические вопросы стратиграфии, палеогеографии, тектоники, палеонтологии и нефтяных систем меловых отложений различных регионов России и ближнего зарубежья.

Сборник предназначен для геологов широкого профиля, занимающихся геологией мезозоя, палеонтологов и стратиграфов, студентов геологического, географического и биологического факультетов.

Организация и проведение совещания поддержаны Российским фондом фундаментальных исследований, грант 12-05-06064, а также другими грантами и программами РФФИ, Президиума РАН, ДВО РАН, ОНЗ РАН, ФГУНПП Аэрогеология, ФГБУН ГИН РАН, НИР СПбГУ, Грантами Президента.

УДК 551.763(082) + 551.8(082) ББК 26.323.263я431

ISBN 978-5-8209-0814-9

© ФГБОУ ВПО «Кубанский государственный университет», 2012

© Коллектив авторов, 2012

К ВОПРОСУ О ВЕРХНЕМЕЛОВЫХ ОТЛОЖЕНИЯХ ГОРНОГО АЛТАЯ

Е.Ю. Барабошкин 1 , В.С. Зыкин 2 , Н.К. Лебедева 3 , С.В. Парначев 4 , <u>Б.Н. Шурыгин</u> 3 , В.Н. Беньямовский 5 , В.А. Маринов 3 , Т.Н. Смирнова 1 , А.Ю. Гужиков 6 , А.В. Соловьев 5

¹Московский государственный университет, Москва, barabosh@geol.msu.ru
²Институт геологии и минералогии СО РАН, Новосибирск, zykin@uiggm.nsc.ru
³Институт нефтегазовой геологии и геофизики СО РАН, Новосибирск:
lebedevank@ipgg.nsc.ru, shuryginBN@ipgg.nsc.ru, marinovva@ipgg.nsc.ru

⁴OAO «ТомскНИПИнефть», Томск, parnachevsv@nipineft.tomsk.ru

⁵Геологический институт РАН, Москва: vnben@mail.ru, solov@ilran.ru

⁶Саратовский государственный университет, Саратов, aguzhikov@yandex.ru

TO THE PROBLEM OF UPPER CRETACEOUS OF GORNY ALTAI

E.J. Baraboshkin¹,V.S. Zykin³, N.K. Lebedeva³, S.V. Parnachev⁴, B.N.Shurygin³, V.N. Benyamovskiy⁵, V.A. Marinov³, T.N. Smirnova¹, A.Y. Guzhikov⁶, A.V. Solovjev⁵

¹ Moscow State University, Moscow: barabosh@geol.msu.ru,
² Institute of Geology and mineralogy SB RAS, Novosibirsk, zykin@uiggm.nsc.ru
³ Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk:
lebedevank@ipgg.nsc.ru, shuryginBN@ipgg.nsc.ru, marinovva@ipgg.nsc.ru

⁴OAO «TomskNIPIneft», Tomsk, parnachevsv@nipineft.tomsk.ru

⁵ Geological institute of RAS, Moscow: vnben@mail.ru, solov@ilran.ru

⁶ Saratov State University, Saratov, aguzhikov@yandex.ru

В 1999 г. было опубликовано сообщение об открытии в Чуйской впадине Горного Алтая морских верхнемеловых отложений (Зыкин и др., 1999). Это выглядело невероятным на фоне традиционных представлений о геологии данного региона, поэтому данное известие было встречено с большим скепсисом (Новиков, 2001, 2004; Новиков и др., 2004). Последовавшая дискуссия побудила авторов открытия опубликовать более полные данные и изображение некоторых макрофоссилий (Зыкин и др., 2008), однако четкого представления о строении разреза, условиях его формирования, его взаимоотношении с окружающими породами не было. Для решения этих проблем был организован научный проект, поддержанный РФФИ, и в 2010–2011 гг. проведены полевые работы и получены новые сведения о местонахождении.

Строение разреза. Разрез изучен в двух обнажениях, расположенных в параллельных овражках на левом борту долины реки Кызыл-Чин, в 500 м выше устья ручья Корумкешу, на высоте 1840-1850 м; выходы приурочены к зоне Чарышско-Теректинского разлома. Породы, по всей видимости, находятся в тектоническом блоке, где с севера они отделены зоной разрыва от девонских отложений, содержащих брахиопод *Spinatrypa* Coop., *Anathyrella* Khal., Gras., Sinch., Kul., *Keprina* Struve, *?Mimatrypa* Struve. На юге породы уходят под покров верхнеплейстоценовых и голоценовых отложений. Залегание пластов варьирует от опрокинутого 320∠80 на севере до субвертикального 130-140∠80-85 на юге; внутри толщи есть мелкие разрывы.

Разрезы внешне отличаются друг от друга. Западный разрез находится в зоне развития олигоценовой коры выветривания, в нем породы сильно изменены, осветлены, в них присутствуют конкреционные прослои гидроокислов железа, залегающие субгоризонтально; верхняя часть обнажения окрашена в красные цвета. Восточный разрез изменен меньше, имеет зеленоватую и буроватую окраску, напоминая отложения девона. Несмотря на различия, разрезы дублируют друг друга, и отдельные пласты песчаников прослеживаются из одного разреза в другой. Последовательность представлена переслаиванием пачек алевритистых аргиллитов (метры—десятки метров) и пачек чередования аргиллитов с мелкозернистыми песчаниками и алевролитами (первые метры). Породы горизонтально-слоистые, реже — с текстурой ряби волнения, градационной или биотурбационной. В верхней части разреза присутствуют карбонатные конкреции со структурой *cone-in-cone*. Видимая мощность около 110 м.

Седиментология. Изученные терригенные разрезы имеют мелководный облик; преобладание горизонтальной слоистости и редкость ряби волнения свидетельствуют об осадконакопление ниже- или на уровне базиса волн (40-50 м). Биотурбации слабо развиты и в относительно большом количестве встречены там же, где и редкие остатки двустворок, брахиопод и криноидей. Сравнительно бедный комплекс ихнофауны включает ихнороды Taenidium isp., Palaeophycus isp., Planolites isp., Chondrites isp., ?Treptichnus isp., ?Cosmorhaphe isp., Thalassinoides isp., не имеющие биостратиграфического значения, и встречающиеся в широком спектре морских условий. Комплекс макрофауны угнетенный: раковины мелкие и редкие, но присутствие брахиопод, мшанок и криноидей (по мнению С.В.Рожнова - палеозойского облика) указывает на нормальную соленость.

Минералы тяжелой фракции. Для сравнения минералогии девонского и предположительно мелового разреза было исследовано тяжелая фракция. Тяжелая фракция (размерность, 0,25 мм) была выделена и исследована в двух образцах (тех же, что и для определения абсолютного возраста) лаборатории минералогического и трекового анализа ГИН РАН. Как видно из таблицы, состав тяжелой фракции обоих образцов близок, что свидетельствует о схожести источников сноса для обеих частей разреза:

	(%) в тяжелой фракции

Возраст образца	D	?K ₂	Возраст образца	D	$\mathbf{K_2}$
Циркон	29,74	39,93	Шпинель	8,58	7,44
Апатит	0,03	3н	Турмалин	2,59	7,48
Рутил	4,00	9,26	Эпидот	6,92	2,24
Анатаз	0,72	3,06	Амфибол	2,95	0,06
Лейкоксен	26,43	27,88	Гиперстен		3Н
Гранат	3Н	0,03	Гидроксид железа	17,95	-
Монацит	0,08	2,65	Сульфиды	3Н	3Н

Палеомагнетизм. Для изучения были отобраны образцы из наименее выветрелого (восточного) разреза и блока девонских пород, граничащих с ним по разрыву. Разрез оказался перемагничен, но в заведомо девонской части, наряду

со вторичной намагниченностью, выделена доскладчатая характеристическая компонента, совпадающая с направлением, полученным для девона Алтае-Салаирского блока (Печерский, Диденко, 1995; Казанский, 2002).

Магнито-минералогический анализ показал, что полное перемагничивание связано с наиболее интенсивными гипергенными изменениями: девонским образцам свойственна минимальная остаточная коэрцитивная сила (Hcr=33.7-35.9 мТл), типичная для слабоокисленных магнитомягких минералов группы титаномагнетита, а для остальных пород характерны более высокие значения Hcr (до 47.7 мТл), связанные с большей степенью окисленности ферромагнитных зерен. Это наблюдение лучше согласуется с гипотезой о принадлежности разреза к девону, хотя и не исключает возможности мелового возраста пород.

Абсолютный возраст. Для получения датировок U-Pb методом по цирконам, было отобрано две пробы песчаников: одна - из наименее выветрелого (восточного) разреза; другая — из блока девонских пород, граничащих с ним по разрыву. Цирконы были выделены в лаборатории минералогического и трекового анализа ГИН РАН, а изотопные измерения проведены на SHRIMP RG в микроаналитическом центре Стэнфорд USGS.

Цирконы оказались весьма сложными, среди них много дискордантных зерен, при этом статистически распределения цирконов в образцах отличаются слабо. Оба образца содержат значительную популяцию каменноугольных цирконов (возраст от 349 до 321 Ма); есть единичные более молодые (пермские) и более древние цирконы. Таким образом, датировки обломочных цирконов не доказывают меловой возраст (учитывая, что в данном районе известны юрские гранитоиды), хотя и не отрицают его.

Палеонтология. Для обоих разрезов была получена микро- и макропалеонтологическая характеристика. Палинокомплексы, определенные Н.К. Лебедевой, оказались существенно беднее, чем при предыдущем исследовании (Зыкин и др., 1999, 2008). Были определены споры: Gleicheniidites sp., пыльца голосемянных: Ginkgocycadophytus sp., Pinuspollenites minimus (Couper) Kemp, P. sp., Alisporites sp., Phyllocladidites sp., Eucommiidites sp., Clasopollis sp., Cedripites sp.; пыльца покрытосемянных Tricolporopollenites sp., Tricolpites sp., Kuprianipollis sp.; диноцисты: Alterbidinium sp., Circulodinium sp., Cleistosphaeridium sp., Apteodinium aff. maculatum Eisenack et Cookson, Kallosphaeridium sp., зигнемовые водоросли Schizosporis sp., Ovoidites sp., акритархи: Micrhystridium sp., Veryhachium reductum (Deunff) Jernowsky, празинофиты: Tasmanites Leiosphaeridia sp. Многие из перечисленных таксонов имеют широкий стратиграфический диапазон, однако совместное присутствие двухмешковой пыльцы хвойных, покрытосемянных и диноцист Alterbidinium sp., Kallosphaeridium sp., Circulodinium sp., Cleistosphaeridium sp. свидетельствует о позднемеловом возрасте отложений, что подтверждает прежние выводы. Отметим, что диноцисты Chatangiella chetiensis (Vozzhennikova) Lentin et Williams, определенные ранее (Зыкин и др., 1999, 2008), в новых сборах не встречены.

Новых находок микрофауны сделано не было, но в одной пробе были встречены эоценовые фораминиферы и радиолярии хорошей сохранности. К этим данным мы относимся с осторожностью.

Комплекс макрофауны близок к опубликованному (Зыкин и др., 2008). Среди двустворок Б.Н.Шурыгиным определены: *Trigonoarca moutoniana* (d'Orb.), *Dianchora* ex gr. *striata* J.Sow. sp. juv., *Cyprimeria* ex gr. *faba* (J. et J. de C.Sow.), *Nanonavis* cf. *carinata* (J. Sow.), *Panopea* ex gr. *mandibula* (J. et J. de C.Sow.), *P.* ex gr. *gurgitis* (Brongniart), *Lima* sp. ind., *Lucina* ex gr. *dawnesi* Woods, *Aphrodina* ex gr. *orbignyi* Sob., *Chlamys* sp. juv., *Inoceramus* sp. juv., известные из верхнего сеномана – турона. Стоит отметить, что большинство двустворок мелкие, имеют не очень хорошую сохранность.

Список брахиопод, определенных Т.Н. Смирновой на основе морфологии раковины (Зыкин и др., 2008), включал сеноман-туронских Gemmarcula cf. auriculata Katz, Malwirhynchia cf. sigma (Schloth.), Urbanirhynchia crassicostata Katz и был пополнен находками Malwirhynchia sp., Urbanirhynchia ex gr. implicata Katz и U. sp.

После проведения томографических исследований у двух брахиопод из восточного разреза был выявлен ручной аппарат спирального типа, характерный для надсемейства Retzioidea Waagen, 1883 (S-T). Среди них Т.А.Грунт была определена ?Altajella sp. (S-D), а «Malwirhynchia sp.» была переопределена как ?Reticularoidea sp. (S-P). Остальные брахиоподы ринхонеллоидного облика, по мнению Т.А.Грунт, вероятно, относятся к роду Retzia King, 1850 (S-C).

Полученные данные ставят новые вопросы о структуре и строении разреза, взаимоотношении палеозойских и предполагаемых меловых толщ, нуждающихся в дальнейшем изучении комплексов различной биоты.

Авторы признательны В.С.Вишневской, Г.Э.Козловой, Г.Т.Ушатинской, А.П.Расницыну, П.Сартенеру, Т.А.Грунт, С.В.Рожнову и А.С.Алексееву за помощь в определении микро- и макрофауны, Д.В.Коросту за проведение томографических исследований, И.С.Ипатьевой за определение минералов тяжелой фракции, а Е.В.Щепетовой за консультации по ним. Авторы благодарят РФФИ (гранты 10-05-00276, 10-05-00308) за финансовую поддержку.

Литература

Зыкин В.С., Лебедева Н.К., Буслов М.М., и др. 1999. Открытие морского верхнего мела на Горном Алтае // Докл. РАН. Т. 366. № 5. С. 669-671.

Зыкин В.С., Лебедева Н.К., Шурыгин Б.Н. и др. 2008. Палеонтологические свидетельства присутствия морского верхнего мела на Горном Алтае // Меловая система России и ближнего зарубежья: проблемы стратиграфии и палеогеографии. Мат. IV Всерос. совещ. Новосибирск: Изд-во СО РАН, С. 90-92.

Казанский А.Ю. 2002. Эволюция структур западного обрамления Сибирской платформы по палеомагнитным данным // Дисс. д.г.-м.н. Новосибирск, 343 с.