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The Triassic timescale based on nonmarine tetrapod

biostratigraphy and biochronology

SPENCER G. LUCAS

New Mexico Museum of Natural History and Science, 1801 Mountain Road NW,

Albuquerque, NM 87104-1375 USA (e-mail: spencer.lucas@state.nm.us)

Abstract: The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology
divides Triassic time into eight land-vertebrate faunachrons (LVFs) with boundaries defined by the
first appearance datums (FADs) of tetrapod genera or, in two cases, the FADs of a tetrapod species.
Definition and characterization of these LVFs is updated here as follows: the beginning of the
Lootsbergian LVF ¼ FAD of Lystrosaurus; the beginning of the Nonesian ¼ FAD Cynognathus;
the beginning of the Perovkan LVF ¼ FAD Eocyclotosaurus; the beginning of the Berdyankian
LVF ¼ FAD Mastodonsaurus giganteus; the beginning of the Otischalkian LVF ¼ FAD Parasu-
chus; the beginning of the Adamanian LVF ¼ FAD Rutiodon; the beginning of the Revueltian
LVF ¼ FAD Typothorax coccinarum; and the beginning of the Apachean LVF ¼ FAD Redonda-
saurus. The end of the Apachean (¼ beginning of the Wasonian LVF, near the beginning of the
Jurassic) is the FAD of the crocodylomorph Protosuchus. The Early Triassic tetrapod LVFs, Loots-
bergian and Nonesian, have characteristic tetrapod assemblages in the Karoo basin of South Africa,
the Lystrosaurus assemblage zone and the lower two-thirds of the Cynognathus assemblage zone,
respectively. The Middle Triassic LVFs, Perovkan and Berdyankian, have characteristic assem-
blages from the Russian Ural foreland basin, the tetrapod assemblages of the Donguz and the
Bukobay svitas, respectively. The Late Triassic LVFs, Otischalkian, Adamanian, Revueltian and
Apachean, have characteristic assemblages in the Chinle basin of the western USA, the tetrapod
assemblages of the Colorado City Formation of Texas, Blue Mesa Member of the Petrified
Forest Formation in Arizona, and Bull Canyon and Redonda formations in New Mexico. Since
the Triassic LVFs were introduced, several subdivisions have been proposed: Lootsbergian can
be divided into three sub-LVFs, Nonesian into two, Adamanian into two and Revueltian into
three. However, successful inter-regional correlation of most of these sub-LVFs remains to be
demonstrated. Occasional records of nonmarine Triassic tetrapods in marine strata, palynostrati-
graphy, conchostracan biostratigraphy, magnetostratigraphy and radioisotopic ages provide
some basis for correlation of the LVFs to the standard global chronostratigraphic scale. These
data indicate that Lootsbergian ¼ uppermost Changshingian, Induan and possibly earliest Olene-
kian; Nonesian ¼ much of the Olenekian; Perovkan ¼ most of the Anisian; Berdyankian ¼ latest
Anisian? and Ladinian; Otischalkian ¼ early to late Carnian; Adamanian ¼ most of the late
Carnian; Revueltian ¼ early–middle Norian; and Apachean ¼ late Norian–Rhaetian. The Trias-
sic timescale based on tetrapod biostratigraphy and biochronology remains a robust tool for the
correlation of nonmarine Triassic tetrapod assemblages independent of the marine timescale.

Triassic tetrapod (amphibian and reptile) fossils
have long been used in biostratigraphy, a tradition
extending back to at least the 1870s. Lucas (1990)
advocated developing a global Triassic timescale
based on tetrapod evolution, and subsequently
Lucas (1998a) presented a comprehensive global
Triassic tetrapod biochronology (Fig. 1). This bio-
chronological timescale divides the Triassic into
eight time intervals (land-vertebrate faunachrons,
LVFs) based on successive changes in faunal com-
position driven by tetrapod evolution. This model
has been tested and refined for more than a
decade. Here, I present the current status of the
Triassic tetrapod-based timescale, incorporating
new data, analyses and modifications published
since 1998.

In this paper: FAD ¼ first appearance datum;
HO ¼ highest occurrence; LO ¼ lowest occur-
rence; LMA ¼ land–mammal ‘age’; LVA ¼
land-vertebrate ‘age’; LVF ¼ land–vertebrate fau-
nachron; and SGCS ¼ standard global chronostrati-
graphic scale (the marine timescale).

Previous studies

Although tetrapods have been used to correlate non-
marine Triassic strata since the 1800s, before the
1990s few attempts were made to establish a
global tetrapod biostratigraphy or biochronology
of the Triassic (Fig. 2). In the late 1800s, some
workers did use tetrapod fossils to correlate

From: LUCAS, S. G. (ed.) The Triassic Timescale. Geological Society, London, Special Publications, 334, 447–500.
DOI: 10.1144/SP334.15 0305-8719/10/$15.00 # The Geological Society of London 2010.



nonmarine Triassic strata on a broad scale, for
example, Cope (1875) who correlated part of the
German Keuper to the Upper Triassic strata of the
American Southwest based on shared taxa of fossil
reptiles such as the phytosaur ‘Belodon’.

Broom (1906, 1907, 1909) introduced the ear-
liest, and perhaps the most influential, Triassic

tetrapod biostratigraphy, for the Lower Triassic of
the Karoo basin in South Africa. He identified
three successive biostratigraphic intervals, the
Lystrosaurus, Procolophon and Cynognathus
‘beds’. Watson (1914a, b) later termed these
‘zones’ and, since Kitching (1970), the Lystrosaurus
and Procolophon zones have been combined into a
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Fig. 1. The Triassic timescale based on tetrapod biostratigraphy and biochronology. Restoration of Typothorax by Matt
Celeskey.
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Fig. 2. Previous tetrapod-based subdivisions of Triassic time.
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single, Lystrosaurus zone (e.g. Rubidge et al. 1995;
Botha & Smith 2007). Recognition elsewhere of the
Lystrosaurus and/or Cynognathus ‘beds’ or ‘zones’
has long been possible in Antarctica, South
America, India, China and/or Russia because
some Early Triassic tetrapod taxa are virtually cos-
mopolitan, especially the genera Lystrosaurus and
Cynognathus (Lucas 1998a).

Romer (1975; also see Cox 1973) presented the
first global Triassic tetrapod biochronology, by
identifying three successive Triassic land–
vertebrate ‘faunas’: A, Early Triassic; B, Middle
Triassic; and C, Late Triassic (Fig. 2). Cosgriff
(1984) divided Romer’s division A into A1 (¼
Lystrosaurus biochron) and A2 (¼ Cynognathus
biochron). Ochev & Shishkin (1989; also see
Anderson & Cruickshank 1978) recognized the
same intervals as Romer, but chose to name them
the: A, proterosuchian epoch; B, kannemeyerioi-
dean epoch; C, and dinosaurian epoch.

Cooper (1982) proposed a more detailed global
tetrapod biostratigraphy of the Triassic than did
Romer and other workers of the 1970s and 1980s
(Fig. 2). In this, he recognized a succession of six
Triassic zones based largely on a perceived strati-
graphic succession of dicynodonts (Lucas & Wild
1995 later presented a revized Triassic dicyno-
dont biozonation). Subsequent workers have not
adopted Cooper’s zonation. Indeed, prior to Lucas
(1998a), the concept of a global Triassic tetrapod
biostratigraphy and biochronology had not pro-
gressed beyond Romer (1975).

Tetrapod-based subdivisions of Triassic time
have been proposed as local, provincial biochronol-
ogies for Argentina, North America and China.
Bonaparte (1966, 1967, 1982) introduced a set of
‘provincial ages’ for the Triassic of Argentina, but
he never defined these terms (Fig. 2). However,
since then Lucas & Harris (1996) have defined the
Chanarian as a LVF, and Langer (2005b) has
defined the Ischigualastian as a LVF. Lucas
(1993a) proposed a succession of LVFs for the
Chinese Early–Middle Triassic tetrapod record. At
about the same time, Lucas & Hunt (1993a) pro-
posed Late Triassic LVFs based on the Chinle
Group tetrapod record from the western United
States, and Huber et al. (1993b) proposed
Middle–Late Triassic LVFs based on the Newark
Supergroup record of eastern North America
(Fig. 2). Lucas et al. (1997a) since then have pre-
sented revized definitions of some of the Late Trias-
sic LVFs proposed by Lucas & Hunt (1993a).

Lucas & Huber (2003) reviewed global Late
Triassic tetrapod biochronology and demonstrated
the broad applicability of the LVFs proposed by
Lucas and Hunt (1993a; also see Lucas 1997a).
Lucas et al. (2007e) reviewed the status of the Trias-
sic timescale based on patterns of tetrapod evolution

and made some necessary modifications that are
incorporated and elaborated upon here.

Vertebrate biostratigraphy and

biochronology

The term LMA has long referred to intervals of geo-
logical (mostly Cenozoic) time characterized by dis-
tinctive mammalian fossil assemblages. LMAs have
been defined to encompass Cenozoic time intervals
on most of the world’s continents (Savage & Russell
1983), and for the Late Cretaceous of western North
America (Cifelli et al. 2004). However, more
broadly-based LVA or LVF have been introduced
for parts of the Mesozoic record of Asia, South
America and North America (Lucas 1997b, 2008).
Thus, LVAs or LVFs have been proposed for the
Triassic and Jurassic of China (Lucas 1993a, 1996);
the Triassic of Argentina (Bonaparte 1966); the Late
Triassic of western North America (Lucas & Hunt
1993a); the Middle Triassic–Early Jurassic of east-
ern North America (Huber et al. 1993a; Lucas &
Huber 2003; Lucas & Tanner 2007a, b); the Late
Jurassic–Early Cretaceous of western North
America (Lucas 1993e); the Late Cretaceous of
western North America (Russell 1964, 1975;
Sullivan & Lucas 2003, 2006); the Late Jurassic-
Cretaceous of Mongolia and China (Jerzykiewicz &
Russell 1991; Lucas & Estep 1998; Lucas 2006a);
and the Cretaceous of Argentina (Leanza et al.
2004). Russell (1993) proposed marine vertebrate
ages for the Cretaceous of western North America.

Mammals are not the only tetrapods that can
be used to recognize intervals of geologic time. In
the Mesozoic, especially prior to the Late Cretac-
eous, when mammal fossils are very rare, non-
mammalian tetrapods can be biochronologically
useful. For this reason, some workers use the term
LVA. Because LMAs and LVAs are not formal
ages in stratigraphy, Lucas (1993a) introduced the
term faunachron (essentially the same concept as
Dunbar & Rodgers’ [1957] ‘faunichron’) to refer
to the time interval that is equivalent to the duration
of a ‘fauna’. I, thus, use the more precise term LVF
instead of LMA or LVA.

LVFs are biochronological units, and I define
their beginnings by biochronological events. Each
LVF begins with the FAD of a tetrapod index
taxon, usually a genus, though species are used if
they provide greater biostratigraphic resolution. In
so doing, the end of an LVF is defined by the begin-
ning of the succeeding LVF, which is the FAD of
another tetrapod index taxon. This is a precise way
to define LVF boundaries. LVFs thus are interval
biochrons.

A distinctive assemblage of vertebrate fossils
characterizes each LVF. The name of the LVF is a
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geographical name taken from the place where (or
very close to where) the characteristic example of
the vertebrate fossil assemblage was collected.
Many LMA and LVA names have been taken
from the rock formation in which the fossils are
found, and the rock formation name is based on a
place name. However, using the rock formation
name may cause confusion because it can imply
that the LMA or LVA refers to the entire duration
of deposition of the formation and not just to the
duration of interval in which the vertebrate fossil
assemblage is found, which is often much shorter.
It is less confusing to choose another place name
for the LMA or LVA. For example, the Late Triassic
Ischigualastian LVA of Argentina (Bonaparte 1966)
was named for the Ischigualasto Formation, but the
Ischigualastian LVF vertebrates do not occur
throughout the Ischigualasto Formation, which is
potentially confusing. In contrast, the Late Triassic
Adamanian LVF of western North America (Lucas &
Hunt 1993a) is named after Adamana, where the
fossils occur, not after the Blue Mesa Member of
the Petrified Forest Formation, which contains the
characteristic fossil assemblage. This prevents con-
fusion between the concept of a formation and the
concept of a LVF.

The characteristic tetrapod assemblage is the
primary basis for characterization of the LVF.
Index fossils identified here meet the criteria of
true index fossils (temporally restricted, common,
widespread, easily identified) and do not include
endemic or rare taxa that happen to be restricted to
a LVF, usually as single records. Principal

correlatives of the characteristic tetrapod assem-
blage of each LVF are listed in this article. These
are tetrapod assemblages that are reasonably well
studied, diverse and unambiguously correlated.
Although I make a strong effort here to correlate
the LVFs to the SGCS, the tetrapod biochronology
of the Triassic is a timescale independent of the
SGCS. It is also important to keep in mind that,
although global LVF’s could not be defined today
due to the wide separation of most of the continents,
in the Triassic Pangaean world it was possible for at
least some of the land vertebrates to spread across
most of the world’s land area. Some degree of
endemism is apparent, but it was not so great as
to prevent definition of global or near-global
faunachrons.

Triassic land–vertebrate faunachrons

Introduction

The Triassic tetrapod timescale is based on tetrapod
assemblages from the Karoo basin in South Africa
(Early Triassic: Lootsbergian–Nonesian), the Ural
forelandbasininRussia(MiddleTriassic:Perovkan–
Berdyankian) and the Chinle basin of the western
USA (Upper Triassic: Otsichalkian–Apachean)
(Fig. 3). The Karoo basin contains the tetrapod
assemblages characteristic of the Lootsbergian and
Nonesian LVFs. These assemblages are stratigra-
phically superposed and are thus demonstrably
time successive; they are the classic Lystrosaurus
assemblage zone and most of the Cynognathus

Chinle 
basin

Ural
basin

Karoo
basin

Fig. 3. Map of Triassic Pangaea showing the three areas that provide the fossils and strata that form the standards for the
Triassic tetrapod timescale: Karoo basin, South Africa (Lootsbergian and Nonesian), Russian Urals basin (Perovkan
and Berdyankian) and Chinle basin (Otischalkian, Adamanian, Revueltian and Apachean). Base map drawn by
Matt Celeskey.
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assemblage zone (e.g. Rubidge et al. 1995;
Groenewald & Kitching 1995; Kitching 1995;
Hancox & Rubidge 1997; Hancox 2000; Smith &
Botha 2005; and Botha & Smith 2007 provide an
overview). These assemblages include amphibians,
parareptiles, dicynodonts and cynodonts particu-
larly useful for broad correlation.

The South African Triassic tetrapod record con-
tains a long hiatus between the uppermost strata of
the Lower Triassic Cynognathus assemblage zone
and southern African rocks that contain tetrapods
of certain Late Triassic age (notably the lower
Elliot Formation: Lucas & Hancox 2001). This
forces the tetrapod biochronological standards for
Middle Triassic time to be moved elsewhere. For
this part of the standards, Lucas (1998a) used two
superposed tetrapod assemblages from the Russian
Ural foreland basin (e.g. Shishkin et al. 1995b,
2000a, b; Ivakhnenko et al. 1997; Novikov et al.
2000; Battail & Surkov 2000; Gower & Sennikov
2000; Spencer & Benton 2000; Ivakhnenko 2008a,
b, c; Sennikov 2008; Tatarinov 2008) as the basis
for the Middle Triassic Perovkan and Berdyankian
LVFs. The presence of some temporal overlap
between the top of the South African section
(upper Cynognathus Zone) and the Urals foreland
basin section makes correlation between these sec-
tions considerably easier. The Russian assemblages
yield amphibians, archosaurs and dicynodonts of
value for broad correlation. No Upper Triassic
tetrapod assemblages are known from the Russian
Ural foreland basin (e.g. Shishkin et al. 2000b),
so the tetrapod biochronology standard for Late
Triassic time again must be moved elsewhere.

The Chinle Group strata of the American South-
west provide the best studied and most complete
record for defining the Late Triassic LVFs: Otis-
chalkian, Adamanian, Revueltian and Apachean.
Of great importance, tetrapod assemblages from
Texas (Otischalkian characteristic assemblage),
Arizona (Adamanian characteristic assemblage)
and New Mexico (Revueltian and Apachean charac-
teristic assemblages) are stratigraphically super-
posed and thus are time successive (e.g. Lucas
1993c, 1997a; Lucas et al. 2001; Heckert & Lucas
2002a, b, 2003; Heckert 2004; Heckert et al.
2005a, b; Parker et al. 2006). The Chinle assem-
blages yield phytosaurs, aetosaurs and metoposaurs
useful for broad correlation, and a burgeoning
microvertebrate biostratigraphy also supports ths
macrovertebrate-based correlation (Heckert 2004;
Heckert & Lucas 2006).

Lootsbergian LVF

Definition. Lucas (1998a) introduced the term
Lootsbergian LVF for the time between the FAD
of the dicynodont Lystrosaurus and the FAD of

the cynodont Cynognathus (Fig. 1). Its character-
istic tetrapod assemblage is the Lystrosaurus
Assemblage Zone found in the Balfour (Palingkloof
Member), Katberg and Burgersdorp (lower part)
formations of the Karoo basin of South Africa
(e.g. Groenewald & Kitching 1995; Damiani et al.
2003; Smith & Botha 2005; Botha & Smith 2006,
2007). This assemblage zone has a type locality
designated by Groenewald & Kitching (1995)
around Lootsberg Pass. Lootsbergian time begins
with the FAD of Lystrosaurus, which is the end of
the Late Permian Platbergian LVF of Lucas (2005,
2006b). The end of the Lootsbergian is equivalent
to the beginning of the Nonesian LVF, which is
defined by the FAD of Cynognathus.

Broom (1906) introduced two successive zones –
Lystrosaurus and Procolophon – that Kitching
(1970, 1977) later combined into a single, Lystro-
saurus Zone. Keyser (1979) referred to this same
zone as the Lystrosaurus-Thrinaxodon Assemblage
Zone. The original name Lystrosaurus Zone (or
Assemblage Zone) continues to be used (e.g.
Groenewald & Kitching 1995; Lucas 1998a;
Damiani et al. 2001; Botha & Smith 2006, 2007;
Smith & Botha 2005).

Characteristic tetrapod fossil assemblage. The
characteristic tetrapod fossil assemblage of the
Lootsbergian LVF is the Lystrosaurus Assemblage
Zone of the Karoo basin, South Africa. It consists
of amphibians, parareptiles, prolacertiforms, archo-
saurs, dicynodonts, therocephalians and cynodonts.

Kitching (1977) reviewed the Lystrosaurus
Assemblage Zone localities, Groenewald &
Kitching (1995) provided a synopsis of the strati-
graphic ranges of the genera, and Botha & Smith
(2006, fig. 7) have presented the most recent data.
The Lystrosaurus Assemblage Zone has long pro-
vided a standard for correlation of the oldest Triassic
tetrapod assemblages, so it logically serves as the
basis for the oldest Triassic LVF (though it encom-
passes the Permo-Triassic boundary and includes
some uppermost Permian strata, see below).

Index fossils. The following tetrapod genera are
restricted to Lootsbergian time and are widespread
and/or common enough to be useful as index
fossils (Fig. 4): the amphibians Wetlugasaurus,
Tupilakosaurus, Luzocephalus, and Lydekkerina;
the parareptile Procolophon; the prolacertiform
Prolacerta; the archosaur Proterosuchus (¼
Chasmatosaurus); the dicynodont Lystrosaurus;
and the cynodonts Scaloposaurus and Thrinaxodon.

Principal correlatives. Recognition of and corre-
lation within the Lootsbergian is one of the most
stable parts of the Triassic tetrapod timescale.
Thus, the terms Lystrosaurus zone, beds or fauna
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have long been applied to a wide geographical range
of strata/fossils of Lootsbergian age.

Most significant correlatives are the vertebrate
fossil assemblages of the: Wordy Creek Formation,
eastern Greenland; Vokhmian, Sludkian and Ust-
mylian horizons of the Vetluga Series, Russian
Urals; upper Guodikeng and lower Jiucaiyuan

formations, Junggur basin, China; Heshanggou For-
mation, Ordos basin, China; Panchet Formation,
India; Sanga do Cabral Formation, Paraná basin,
Brazil; Rewan Formation, SE Galilee basin,
Australia; Arcadia Formation, SW Bowen basin,
Australia; and lower part of Fremouw Formation,
Antarctica. Note that the alleged Lystrosaurus

taxa

Eryosuchus
Luzocephalus

Lydekkerina

Odenwaldia

Parotosuchus

Trematosaurus

Trematosuchus

Tupilakosaurus

Wetlugasaurus

parareptile:

Procolophon
prolacertiform:

Prolacerta

archosaurs:

Arizonasaurus

Erythrosuchus

dicynodonts:

cynodonts:

Cynognathus

Diademodon

Scaloposaurus

Thrinaxodon
Trirachodon

Lootsbergian Nonesian Perovkan Berdyankian

Mastodonsaurus

Paracyclotosaurus

Kannemeyeria

Parakannemeyeria

Lystrosaurus

Sinokannemeyeria

Shansiodon

Stahleckeria

Massetognathus

Scalenodon

amphibians:

Eocyclotosaurus

Fig. 4. Temporal ranges of selected genera of Early and Middle Triassic tetrapods.
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record from Laos (Repelin 1923; Piveteau 1938) has
been re-identified as the Late Permian dicynodont
Dicynodon (Battail et al. 1995; Battail 1997).

The Wordy Creek Formation in eastern Green-
land yields the amphibians Luzocephalus, Wetluga-
saurus and Tupilakosaurus (Säve-Söderbergh 1935;
Nielsen 1954) and thus is of Lootsbergian age.
These strata also yield Induan ammonites, and are
key to correlation of the Lootsbergian to part of
the Induan (see below).

In the Russian Urals, the Lootsbergian interval is
equivalent to Zone V of Efremov (1937, 1952),
which has most recently been called the Vokhmian,
Sludkian and Ustmylian horizons of the Vetlugan
Series (Superhorizon) (Ivakhnenko et al. 1997;
Shishkin et al. 2000b). Tetrapod taxa include
anthracosaurs, the temnospondyls Luzocephalus,
Benthosuchus, Wetlugasaurus and Tupilakosaurus,
procolophonids, a prolacertiform, the proterosuchid
Chasmatosuchus and other (mostly fragmentary)
archosaurs and the dicynodont Lystrosaurus
(Shishkin et al. 1995b; Ivakhnenko et al. 1997;
Battail & Surkov 2000; Gower & Sennikov 2000;
Novikov et al. 2000; Shishkin et al. 2000a, b;
Spencer & Benton 2000).

In northwestern China, land-vertebrates of
Lootsbergian age come from the upper part of
the Guodikeng Formation and the lowermost
Jiucaiyuan Formation (both in the Cangfanggou
Group) near Jimsar NE of Urumqi in western
Xinjiang (e.g. Cheng 1981; Metcalfe et al. 2009).
These vertebrates are the ‘Lystrosaurus fauna’ of
northwestern China of some workers (e.g. Sun
1972), and they provided the basis for the Jimsarian
LVF of Lucas (1993a). Taxa present are a pro-
lacertid, a ?procolophonid, the proterosuchian
Proterosuchus (¼ Chasmatosaurus), a regisaurid
therocephalian and the dicynodont Lystrosaurus,
of which seven species have been named, most of
which are invalid (Colbert 1974; Colbert & Kitching
1977; Lucas 2001).

In the Ordos basin of north–central China, near
Fugu, Shanxi, the upper part of the Heshanggou
Formation yields a vertebrate fauna that was the
basis of the Fuguan LVF of Lucas (1993a). Taxa
present are indeterminate capitosauroids, procolo-
phonids, an erythrosuchid and an ordosiid theroce-
phalian; based primarily on the procolophonids,
these are of likely Lootsbergian age.

In India, the Panchet Formation along the
Damodar River northwest of Calcutta has produced
a Lootsbergian vertebrate assemblage that includes
a lydekkerinid, ?benthosuchid, ?capitosaurids, an
indobrachyopid, trematosaurids, a procolophonid,
the proterosuchian Proterosuchus and Lystrosaurus
(Lydekker 1882; Sahni & Huene 1958; Tripathi
1961, 1969; Tripathi & Satsangi 1963; Hughes
1963; Ray 2005).

In southern Brazil, the Sanga do Cabral For-
mation in the Paraná basin yields a rhytidosteid
amphibian, indeterminate temnospondyls, Procolo-
phon, ?thrinaxodontids and ?Lystrosaurus (e.g.
Barbarena et al. 1985; Lucas 2002; Abdala et al.
2002; Cisneros 2008a, b; Cisneros & Schultz 2002;
Dias-da-Silva et al. 2005, 2006a, b; Dias-da-Silva
& Marsicano 2006; Dias-da-Silva & Schultz 2008).
A putative Permian tetrapod record from the Buena
Vista Formation of Uruguay (Piñeiro et al. 2003,
2004, 2007) is more likely correlative to the Loots-
bergian Sanga do Cabral assemblage (Dias-da-Silva
et al. 2006b).

In eastern Australia, the Arcadia Formation (SW
Bowen basin) and the Rewan Formation (SE Galilee
basin) yield small assemblages of tetrapods of
Lootsbergian age. The Arcadia Formation assem-
blage encompasses a diversity of mostly endemic
amphibians, including fragmentary lydekkerinids,
a primitive procolophonid, a possible Prolacerta,
an archosaur similar to Proterosuchus and ?Lystro-
saurus (e.g. Bartholomai 1979; King 1983;
Thulborn 1983; Warren 1991; Damiani 2001;
Warren et al. 2006). In the SE Galilee basin, the
occurrence of Lydekkerina in the Rewan Formation
supports a Lootsbergian age assignment (Warren
et al. 2006).

Southwest of the Transantarctic Mountains in
southern Antarctica, the lower part of the Fremouw
Formation yields a vertebrate fossil assemblage of
Lootsbergian age that includes temnospondyls,
a rhytidosteid, the procolophonid Procolophon,
the prolacertiform Prolacerta, a proterosuchid or
erythrosuchid, a rauisuchian, the dicynodonts Myo-
saurus and Lystrosaurus, the cynodont Thrinaxodon
and scaloposaurs (e.g. Colbert 1972, 1991; Hammer
1990; Collinson et al. 2006). This Lootsbergian
assemblage has been referred to as the lower
Fremouw fauna or lower tetrapod fauna of the
Fremouw Formation (Colbert 1972, 1991).

Comments. Most Lootsbergian vertebrate fossil
assemblages are readily recognized by the presence
of Lystrosaurus. Procolophon and Proterosuchus
are also important to the correlation of Lootsbergian
tetrapod assemblages. However, temnospondyl-
dominated assemblages occur that lack Lystrosaurus
and thus are more difficult to correlate. I have used
the temporal overlap of Lystrosaurus and the amphi-
bians Tupilakosaurus and Luzocephalus in Russian
strata as the primary basis for equating Lootsbergian
dicynodont-dominated assemblages with temnos-
pondyl-dominated assemblages.

Cosgriff (1984) assigned several temnospondyl-
dominated assemblages to his A1 ‘horizon’
(¼ Lootsbergian), even though these lack any
index taxa of the Lootsbergian: the Knocklofty
Sandstone/Shale in SE Tasmania (Cosgriff 1974),
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the Sticky Keep Formation in Svalbard (Wiman
1910, 1915; Nilsson 1942, 1943; Cox & Smith
1973), the upper Andavakoera Formation (Middle
Sakamena Group or Formation) in NW Madagascar
(Lehman 1961, 1966; Steyer 2002; Maganuco &
Pasini 2009) and the Arcadia Formation of southern
Queensland (Warren 1991). Except for the Arcadia
Formation, I assign these assemblages a Nonesian
age (see below).

Lootsbergian time encompasses both the ‘Lystro-
saurus zone’ and ‘Procolophon zone’ of classic
usage (e.g. Broom 1906). Thus, two distinct tetrapod
assemblages (at least in the Karoo basin) can be
recognized within the Lootsbergian, simply based
on the stratigraphic distribution of Procolophon.

According to Botha & Smith (2007), all records
of Lystrosaurus maccaigi in the Karoo basin are
Permian (they co-occur with the Permian dicynodont
Dicynodon), whereas L. curvatus straddles the
Permo-Triassic boundary, and records of L. murrayi
and L. declivus are Triassic. This provides a basis for
a threefold subdivision of the Lootsbergian (Fig. 5):
(1) Lootsbergian A is the time of overlap of Dicyno-
don and Lystrosaurus; (2) Lootsbergian B is the
succeeding interval with Lystrosaurus without Pro-
colophon; and (3) Lootsbergian C is the temporal
overlap of Lystrosaurus and Procolophon. These
subdivisions have some value outside of the Karoo
basin. For example, in the Guodikeng Formation in
the Junggur basin of northwestern China, there is a
stratigraphic overlap of Lystrosaurus and Dicynodon
(Lootsbergian A) followed by an interval of Lystro-
saurus without Procolophon (Lootsbergian B)
(Cheng 1981; Metcalfe et al. 2009). Indeed, in north-
western China, the co-occurrence of Lystrosaurus
and Dicynodon at Dalongkou was first assigned to
the upper Changhsingian Falsisca postera conchos-
tracan zone and uppermost part of the F. eotriassica
conchostracan zone by Kozur (1998a, b) (see also
Kozur & Weems 2010). Therefore, a formal subdivi-
sion of the Lootsbergian into sub-LVFs has merit
and should provide more precise correlation within
the Lootsbergian interval.

Nonesian LVF

Definition. The term Nonesian LVF refers to the time
between the FAD of the cynodont Cynognathus and
the FAD of the amphibian Eocyclotosaurus. The
characteristic tetrapod assemblage is found in the
lower two-thirds of the Cynognathus Assemblage
Zone, which is from the upper two-thirds of the Bur-
gersdorp Formation in the Karoo basin of South
Africa (e.g. Kitching 1995; Hancox et al. 1995;
Hancox 2000). The type section of the Cynognathus
Assemblage Zone encompasses Nonesi’s Nek, from
which the name Nonesian is derived (Kitching
1995). Nonesian time begins with the FAD of

Cynognathus, which is the end of the Lootsbergian
LVF. The end of the Nonesian is the beginning of
the Perovkan LVF, which is defined by the FAD of
Eocyclotosaurus.

Broom (1906, 1907) coined the name Cynog-
nathus ‘beds’, which was later transmuted to ‘zone’
by other workers (Watson 1914a, b; Kitching 1970,
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Fig. 5. Subdivisions of the Lootsbergian and Nonesian
LVFs (based primarily on Hancox 2000). Restoration of
Lystrosaurus by Matt Celeskey.
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1977). Keyser & Smith (1978) renamed it the Kan-
nemeyeria Assemblage Zone, and Keyser (1979)
termed it the Kannemeyeria–Diademodon Assem-
blage Zone. Kitching (1984) called it the Cynog-
nathus–Diademodon Assemblage Zone. The term
Cynognathus Assemblage Zone has been used
most recently (e.g. Kitching 1995; Rubidge et al.
1995; Lucas 1998a; Hancox 2000).

Characteristic tetrapod assemblage. The character-
istic assemblage of the Nonesian LVF occurs in sub-
zones A and B of the Cynognathus Assemblage
Zone of the Karoo basin (Hancox 2000) (Fig. 5).
The tetrapod taxa present are amphibians, including
Parotosuchus, Wellesaurus and Trematosuchus,
captorhinids, a ?sphenodontid (or ?procolophonid),
rhynchosaurs, the archosaurs Erythrosuchus and
Euparkeria, the dicynodonts Kannemeyeria and
Kombuisia, therocephalians and cynodonts, includ-
ing Cynognathus, Diademodon and Trirachodon
(e.g. Kitching 1977, 1995; Hancox & Rubidge
1994; Hancox et al. 1995; Shishkin et al. 1995a;
Damiani 2001; Damiani & Rubidge 2003; Abdala
et al. 2005).

Index fossils. The following tetrapod genera are
restricted to Nonesian time and are widespread
and/or common enough to be considered index
fossils (Fig. 4): the amphibians Parotosuchus,
Odenwaldia, Wellesaurus, Trematosaurus and
Trematosuchus and the cynodont Trirachodon.
The LOs of the the archosaur Erythrosuchus, the
cynodonts Cynognathus and Diademodon and of
the dicynodont Kannemeyeria are in the Nonesian.
The species K. simocephalus is restricted to Nones-
ian time, but the species K. cristarhynchus is
younger, of Perovkan age.

Principal correlatives. Principal correlatives of the
type Cynognathus Assemblage Zone are: Wupatki
and Torrey formations of the Moenkopi Group/
Formation, Utah/Arizona, USA; Sticky Keep
Formation of Svalbard, Arctic Norway; Middle
Buntsandstein (upper Volpriehausen, Hardegsen
and Solling formations), Germany; Petropavlovsk
Formation (Yarenskiy horizon) in the Russian
Urals; lower part of Ermaying Formation, Ordos
basin, China; Puesto Viejo and Rio Mendoza for-
mations, Argentina; base of the Lower Sandstone
of the Zarzaitine Series in Algeria; lower N’tawere
Formation, Zambia; K7 horizon of the Kingori
Sandstone, Tanzania; and upper Fremouw For-
mation, Antarctica.

The Torrey Formation of the Moenkopi Group in
Utah, USA, has yielded a skull of Parotosuchus
(Lucas & Schoch 2002). Specimens of Wellesaurus
as well as an Odenwaldia-like form are from the
Wupatki Member of the Moenkopi Formation in

Arizona (Damiani 2001; Lucas & Schoch 2002;
Heckert et al. 2005a; Nesbitt 2005). These records
of Nonesian index taxa are of late Olenekian age
(see below).

In the Germanic basin, the Middle Buntsandstein
(upper Volpriehausen, Hardegsen and Solling for-
mations) yields fossils of Parotosuchus, Oldenwal-
dia and Trematosaurus, indicative of a Nonesian
age (e.g. Schroeder 1913; Werneburg 1993; Lucas
1999; Schoch & Werneburg 1999; Lucas &
Schoch 2002; Schoch 2008). Specifically, Odenwal-
dia occurs only in the Solling Formation, and
Trematosaurus is common in the Hardegsen For-
mation and present in the Solling Formation. Paro-
tosuchus is known from the Hardegsen and the
Solling formations. One specimen of Parotosuchus
(the holotype of P. helgolandicus) is known from
the uppermost Volpriehausen Formation, from the
upper Gerviellia beds assigned by Kozur &
Bachmann (2008), based on conchostracans, to the
Spathian.

Temnospondyls of the Sticky Keep Formaton in
Svalbard co-occur with early Olenekian (Smithian)
ammonites (Buchanen et al. 1965; Tozer 1967).
The temnospondyls are: Sasenisaurus, Peltostega,
Aphanerama (¼ Lonchorhynchus), Lyrocephalis-
cus, Teretrema and Boreaosaurus (Wiman 1910,
1915, 1916; Nilsson 1942, 1943; Cox & Smith
1973). Such an acme in trematosaur diversity may
characterize the Nonesian. I assign a Nonesian age
to the Sticky Keep tetrapods based mostly on the
marine evidence that they are Olenekian and that
the Nonesian is equivalent to at least part of the Ole-
nekian (see below).

The Petropavlovsk svita in the Russian Urals
(Yarenskiy horizon) yields anthracosaurs, temnos-
pondyls (including Parotosuchus), procolophonids,
a prolacertid, and various archosaurs, including ery-
throsuchids and rauisuchids (Shishkin et al. 1995b,
2000a, b; Ivakhnenko et al. 1997; Battail &
Surkov 2000; Gower & Sennikov 2000; Novikov
et al. 2000; Spencer & Benton 2000). The Parotosu-
chus record is the primary basis for a Nonesian
age assignment.

In China, the lower Ermaying Formation in the
Ordos basin produces a vertebrate fauna upon
which Lucas (1993a) based the Ordosian LVF.
Taxa present are a procolophonid, a proterosuchian,
euparkeriids, a therocephalian and the dicynodonts
Parakannemeyeria and Kannemeyeria (¼ Shaan-
beikannemeyeria) (Lucas 2001). The Kannemeyeria
record as well as the overall composition of the
assemblage suggest a Nonesian age.

In Argentina, the upper part of the Puesto Viejo
Formation produces the dicynodont Kannemeyeria,
a traversodontid and Cynognathus (Bonaparte 1970,
1978, 1982). The co-occurrence of Cynognathus
and Kannemeyeria supports a Nonesian age
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assignment. The correlative fauna from the middle
part of the Rio Mendoza Formation (but see Zavat-
tieri & Arcucci 2007 for a different correlation)
includes Kannemeyeria (Vinceria andina Bonaparte
is not Shansiodon, as Lucas [1993e] suggested, but
instead is Kannemeyeria), traversodontids and
a galeosaurid.

Bonaparte (1981) described dicynodonts and
proterosuchian postcrania from the lower part of
the Puesto Viejo Formation. He referred to them
as the Agua de los Burros local fauna. He assigned
the dicynodonts to ‘Vinceria’ (¼ Kannemeyeria)
and claimed correlation to the Lystrosaurus Assem-
blage Zone based on a mean value of K/Ar ages of
232 + 4 Ma from basalts and tuffs that bracket the
fossils (Valencio et al. 1975, fig. 2). Given that we
now know that the Induan is approximately 251–
252 Ma (Bachmann & Kozur 2004; Kozur &
Weems 2010; Mundil et al. 2010), the Argentinian
dates (which are Carnian by current Triassic
timescale calibration) do not support Bonaparte’s
correlation, nor do the fossils, which instead
suggest a Nonesian age.

The base of the Lower Sandstone of the Zarzaitine
Series in southeastern Algeria yields the amphibians
Odenwaldia and ‘Wellesaurus’ (an indeterminate
heylerosaurid according to Damiani 2001) as well
as a ?brachyopid, trematosaurid and the prolacerti-
form Jesairosaurus (Lehman 1957, 1971; Welles
1993; Jalil 1990, 1993, 1994, 1997, 1999). The
record of Odenwaldia supports a Nonesian age
assignment.

The lower part of the N’tawere Formation in
Zambia produces Diademodon and Kannemeyeria
(Crozier 1970). In the Ruhuhu Valley of Tanzania,
the K7 horizon of the Kingori Sandstone Formation
of Stockley (1932) yields Kannemeyeria (Cruick-
shank 1986). These are likely (though not defini-
tively) Nonesian records.

In Antarctica, the upper part of the Fremouw
Formation yields capitosaurid temnospondyls inc-
luding Parotosuchus, Cynognathus, a diademodon-
tid and a kannemeyeriid (Colbert 1991; Hammer
1988, 1990, 1995; Damiani 2001; Collinson et al.
2006). This has long been regarded as an assemblage
of the ‘Cynognathus zone’, and is of Nonesian age.

Comments. Most Nonesian vertebrate assemblages
have long been recognized by the presence of
Cynognathus and/or Diademodon, but these taxa
have temporal ranges that extend into the Perovkan.
Parotosuchus is a key temnospondyl taxon to corre-
late many Nonesian assemblages (Damiani 2001).
The temporal succession of Kannemeyeria species
is important, with K. simocephalus restricted to the
Nonesian and K. cristarhynchus a Perovkan taxon.

Kitching (1977) reviewed the Cynognathus
Assemblage Zone localities, and Kitching (1995)

and Hancox (2000) provided a synopsis of the strati-
graphic ranges of the genera. Watson (1942) and
Kitching(1977)subdividedtheCynognathusAssem-
blage Zone into two subzones. Hancox & Rubidge
(1994), Hancox et al. (1995), Shishkin et al.
(1995a), Hancox (2000; Hancox et al. 1995, 2000)
and Abdala et al. (2005) divided the Cynognathus
Assemblage Zone into three stratigraphically dis-
crete assemblages (Fig. 5). These assemblages have
been called subzones A, B and C by Hancox et al.
(1995), and the upper one is now assigned a Perovkan
age (Hancox 2000; Abdala et al. 2005; Lucas et al.
2007e). This means that the South African Nonesian
(which encompasses subzones A and B) is divisible
into two biochronological units (Hancox 2000). A
more important point is that recognizing subzone
C as Perovkan means that not all of the classically-
recognized ‘Cynognathus zone’ is Nonesian.

Following Hancox (2000), the Nonesian can be
subdivided into older (Nonesian A) and younger
(Nonesian B) sub-LVFs (Fig. 5). Nonesian A
begins with the FAD of Cynognathus, and Nonesian
B begins with the FAD of Kannemeyeria. The FAD
of Eocyclotosaurus (beginning of the Perovkan
LVF) is the end of Nonesian B. In the Karoo basin,
where Eocyclotosaurus is so far unknown, the LO
of shansiodont dicynodonts approximates the begin-
ning of Perovkan time (Fig. 5). In Nonesian A time
in the Karoo basin, the amphibian Kestrosaurus is
common and associated with Trematosuchus as
well as theriodonts, Cynognathus, Diademodon,
Trirachodon and Bauria. During Nonesian B time,
characteristic taxa are Parotosuchus, Kannemeyeria,
Cynognathus, Diademodon, Trirachodon, Bauria,
Erythrosuchus and Euparkeria. Most of the Nones-
ian correlative tetrapod assemblages (see above)
include Kannemeyeria, so they are of Nonesian
B age.

Perovkan LVF

Definition. The term Perovkan LVF refers to the
time interval between the FADs of the amphibians
Eocyclotosaurus and Mastodonsaurus giganteus
(Fig. 1). The characteristic tetrapod assemblage is
the vertebrate fossil assemblage of the Donguz
svita (Eryosuchus fauna) in the Russian Urals
(Shishkin et al. 1995b, 2000b; Ivahknenko et al.
1997). Lucas (1998a) termed this the Shansiodon
Assemblage Zone, after the distinctive dicynodont
Shansiodon (¼ Rhinodicynodon). These fossils are
from an approximately 175-m-thick section
exposed in the Donguz River drainage near the
city of Perovka, from which the name of the LVF
is taken (Lucas 1998a, fig. 8). The beginning of
the Perovkan is defined by the FAD of the amphi-
bian Eocyclotosaurus. The end of the Perovkan
LVF is the beginning of the Berdyankian LVF,
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which is defined by the FAD of the amphibian
Mastodonsaurus giganteus.

Lucas (1998a) originally defined the beginning
of Perovkan time as the FAD of the dicynodont
Shansiodon. However, Shishkin (2000) has argued
that the type assemblage of the Perovkan LVF is
late Anisian, so it is younger than the Eocycloto-
saurus assemblage that typically represents the Per-
ovkan in western Europe and North America and is
of unambiguous early Anisian age (Lucas & Schoch
2002). A more circumspect reading of the same data
(e.g. Ivakhenko et al. 1997) simply regards the
Donguz assemblage as Anisian, with no more
precise correlation to the SGCS.

Lucas (1993d) argued that the LO of the dicyno-
dont Shansiodon is Anisian, and this is why Lucas
(1998a) used it to define the beginning of the Perov-
kan. However, if the LO of Shansiodon is actually
younger than the LO of Eocyclotosaurus, then
records of Eocyclotosaurus (Upper Buntsandstein
in Germany and France, upper Moenkopi Group in
USA) are of Nonesian age. The temporal succession
of Eocyclotosaurus and Shansiodon is not easily
resolved, but Lucas et al. (2007e) noted that the
LO of Kannemeyeria in China predates the LO of
Shansiodon, and in South Africa the LO of Kanne-
meyria predates the LO of shansiodonts (Fig. 5),
and there is no conclusive evidence that the young-
est Nonesian assemblage in South Africa (subzone
B of Hancox et al. 1995) is equivalent to the Eocy-
clotosaurus zone. Lucas et al. (2007e) therefore
recognized problems in establishing the temporal
succession of Perovkan assemblages, but believe
all are broadly Anisian, and some (part of American
Moenkopi Group, German Röt Formation) are
clearly early Anisian. The easiest way to remove
ambiguity here is to redefine the beginning of the
Perovkan as the FAD of Eocyclotosaurus, as did
Lucas et al. (2007e).

Characteristic tetrapod assemblage. Three princi-
pal sites in the Donguz svita produce the following
taxa: various amphibians, including Eryosuchus,
Bukobaja, Plagiosternum and Plagioscutum, a
procolophonid, a prolacertid, a proterosuchid, the
erythrosuchid Erythrosuchus, rauisuchids, a eupar-
keriid, the dicynodonts Kannemeyeria (¼ Rhadio-
dromus, Rabidosaurus, Edaxosaurus, Calleonassus
and Rhinocerocephalus) and Shansiodon (¼ Rhino-
dicynodon), therocephalians, the cynodonts Scale-
nodon, Antecosuchus and a traversodontid (Shishkin
et al. 1995b, 2000a, b; Ivakhnenko et al. 1997;
Surkov 1999; Battail & Surkov 2000; Gower &
Sennikov 2000; Spencer & Benton 2000; Tverdokh-
lebov et al. 2002).

Index fossils. The following tetrapod genera are
common and/or widespread enough to be useful

index taxa of the Perovkan (Fig. 4): the amphibians
Eryosuchus, Eocyclotosaurus and Paracycloto-
saurus, the archosaur Arizonasaurus, the cynodont
Scalenodon and the dicynodonts Shansiodon, Para-
kannemeyeria and Sinokannemeyeria. Kannemeyria
christarhynchus is a Perovkan index fossil, and the
HOs of Kannemeyeria, Cynognathus and Diademo-
don are Perovkan.

Principal correlatives. Principal correlatives of the
type Perovkan assemblage are from the Holbrook
and Anton Chico members of the Moenkopi For-
mation, Arizona–New Mexico USA; lower part of
Wolfville Formation at Lower Economy, Fundy
basin, Nova Scotia, Canada; Otter Sandstone of
the United Kingdom; Upper Buntsandstein (Röt
Formation), Germany-France; lower Kelamayi
Formation, Junggur basin, Xinjiang, China; upper
Ermaying Formation, Ordos Basin, China; Yerra-
palli Formation, India; Lower Zarzaitine Formation,
Algeria; upper part of the Burgersdorp Formation in
the Karoo basin of South Africa; Omingonde For-
mation, Namibia; and lower Manda Formation,
Tanzania.

The Holbrook and Anton Chico members of the
Moenkopi Formation, in Arizona–New Mexico,
USA, yield the characteristic Perovkan capitosaur-
oid amphibian Eocyclotosaurus, very similar to
E. lehmanni from the Upper Buntsandstein (Röt
Formation), as well as other capitosaurs, brachyo-
pids, and the ctenosauriscid Arizonasaurus (Lucas
& Morales 1985; Lucas & Hunt 1987; Morales
1987; Schoch 2000b; Boy et al. 2001; Lucas &
Schoch 2002; Heckert et al. 2005a; Nesbitt 2005).
A Shansisuchus-like erythrosuchian from the Anton
Chico Member in New Mexico (Lucas et al. 1998b;
Nesbitt et al. 2006) is consistent with a Perovkan
age assignment.

In the Fundy basin of Nova Scotia, Canada, the
lower part of the Wolfville Formation (also referred
to as the ‘Lower Economy Beds’) yields a small tet-
rapod assemblage that was the basis of the Econo-
mian LVF of Huber et al. (1993b). The presence
of a trematosaur (cf. Cosgriffius) and the lepidosaur
cf. Tanystropheus suggests a possible Perovkan age
(Lucas & Huber 2003).

The Otter Sandstone in Devon, United Kingdom,
yields the temnospondyl Eocyclotosaurus, the
rhynchosaur Fodonyx, the prolacertiform Tanystro-
pheus, a procolophonid, a rauisuchian and a ?cteno-
sauriscid archosaur (Benton et al. 1994; Hone &
Benton 2008). As Milner et al. (1990) stressed,
‘Mastodonsaurus’ lavisi Seeley from the Otter
Sandstone is a nomen dubium upon which it is
risky to draw stratigraphic conclusions, so I do not
consider it a Perovkan record of Mastodonsaurus.
Indeed, Damiani (2001) considered the type
material of ‘M.’ lavisi to be indeterminate.
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In Germany and France, the Upper Buntsandstein
(Röt Formation) yields Eocyclotosaurus (Heyler
1969, 1976; Ortlam 1970; Kamphausen & Morales
1981; Lucas & Schoch 2002) and is of Perovkan age.

In the Junggur basin of Xinjiang, China, the
lower part of the Kelamayi (¼ Karamay) Formation
produces a vertebrate fauna that consists of indeter-
minate labyrinthodonts (including the holotype of
the nomen dubium ‘Parotosaurus’ [¼ Parotosu-
chus] turfanensis Young: Lucas & Hunt 1993b), a
euparkeriid, an erythrosuchid and the dicynodonts
Parakannemeyeria and Xiyukannemeyeria (Liu &
Li 2003; Liu 2004). The bauriid therapsid Traver-
sodontoides from Jiyuan, Henan may also be of
Perovkan age (Cheng 1981; Sun 1989).

The upper part of the Ermaying Formation in the
Ordos basin in northern China produces what has
been called the Perovkan-age ‘Sinokannemeyeria
fauna’ or ‘kannemeyeriid fauna’ of China (e.g. Sun
1972; Cheng 1981; Lucas 2001). Lucas (1993a)
based the Ningwuan LVF on this assemblage. The
vertebrate fossil assemblage includes indeterminate
labyrinthodonts, a procolophonid, erythrosuchids,
an ?ornithosuchid, a ?euparkeriid, a cynodont, and
the dicynodonts Shansiodon, Sinokannemeyeria
and Parakannemeyeria (Lucas 2001).

In the Pranhita–Godavari Valley of India, the
Yerrapalli Formation yields an assemblage of Per-
ovkan age. It includes the amphibian Eryosuchus,
the rhynchosaur Mesodapedon, a prolacertid, the
archosaur Erythrosuchus, a raisuchid, the dicyno-
donts Wadiasaurus and Kannmeyeria (¼ Rechni-
saurus), and a trirachodontid, (e.g. Roychowdhury
1970a, b; Chatterjee 1980b; Damiani 2001; Sen
2003, 2005; Bandyopadhyay & Sengupta 2006).

The Omingonde Formation in Namibia produced
a Perovkan-age assemblage that includes an eryo-
poid temnospondyl, the dicynodonts Kannemeyeria
cristarhynchus, Dolichuranus, and Rhopalorhinus,
a bauriamorph, and cynodonts, including ?Cynog-
nathus, Diademodon and Trirachodon (Keyser
1973a, b, 1978; Pickford 1995; Smith & Swartt
2002).

In the Karoo basin of South Africa, the upper
part of the Burgersdorp Formation yields the upper
part of the Cynognathus Assemblage Zone (sub-
zone C of Hancox 2000, see discussion above and
Fig. 5). Characteristic taxa are the amphibian
Paracylotosaurus, the dicynodonts Cynognathus,
Diademodon and Cricodon, and the dicynodonts
Angonisaurus and Kannemeyeria, which support a
Perovkan age assignment (e.g. Hancox & Rubidge
1994, 1996; Damiani 2001; Damiani & Hancox
2003; Abdala et al. 2005). Paracylotosaurus is
also known from the Denwa Formation in the
Satpura basin, India and the Wianamatta Group of
the Sydney basin, Australia (Damiani & Hancox
2003), so these may also be Perovkan records.

The lower Manda Formation in Tanzania pro-
duces the amphibian Eryosuchus, the rhynchosaur
Stenaulorhynchus, the archosaur ‘Mandasuchus’,
the dicynodonts Shansiodon (¼ Tetragonius) and
Angonisaurus and the cynodont Scalenodon
(Huene 1938a, b; Crompton 1955; Cruickshank
1965, 1967; Cox & Li 1983; Damiani 2001). This
is a Perovkan assemblage.

Comments. Lucas (1998a) defined the Perovkan
LVF as the time between the FAD of the dicynodont
Shansiodon and the FAD of the temnospondyl Mas-
todonsaurus. Its characteristic assemblage is the
tetrapod fauna from the Russian Donguz svita, so
the land-vertebrate biochronology shifts here from
superposed South African assemblages (the charac-
teristic assemblages of the Lootsbergian and Nones-
ian LVFs) to the superposed Russian assemblages
(the characteristic assemblages of the Perovkan
and Berdyankian LVFs). This geographical shift
poses problems for the biochronology, particularly
in demonstrating the temporal succession (and not
overlap) of Nonesian and Perovkan assemblages.
Indeed, the reassignment of the upper ‘Cynognathus
zone’ to the Perovkan LVF discussed above directly
reflects such problems (Hancox 2000; Abdala et al.
2005; Lucas et al. 2007e). The easiest way to reduce
ambiguity here was to redefine the beginning of the
Perovkan as the FAD of Eocyclotosaurus (Lucas
et al. 2007e).

Perovkan tetrapod assemblages are best known
in Russia and China where they contain numerous
dicynodonts. Correlatives are either dicynodont
dominated (Manda Formation, upper Burgersdorp
Formation) or amphibian dominated (upper Moen-
kopi, upper Buntsandstein).

Berdyankian LVF

Definition. The term Berdyankian LVF is the time
interval between the FAD of the amphibian Masto-
donsaurus giganteus and the FAD of the phytosaur
Parasuchus (¼ Paleorhinus) (Fig. 1). The charac-
teristic tetrapod assemblage is the vertebrate fossil
assemblage of the Bukobay svita in the Russian
Urals (e.g. Ivakhnenko et al. 1997; Shishkin et al.
2000b). Relevant vertebrate-fossil localities are
near the Berdyank River, from which the LVF
takes its name. The characteristic Berdyankian tet-
rapod assemblage is directly superposed on the
characteristic Perovkan assemblage. The beginning
of the Berdyankian is defined by the FAD of Masto-
donsaurus giganteus, whereas the end of the Ber-
dyankian is the beginning of the Otischalkian,
which is defined by the FAD of Parasuchus.

Characteristic tetrapod assemblage. The assem-
blage from the Bukobay Formation includes an
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anthracosaur, the amphibians Mastodonsaurus,
Bukobaja, ?Cyclotosaurus, Plagioscutum and Pla-
giosternum, an erythrosuchid, a rauisuchid, and
the dicynodonts ‘Elephantosaurus jachimovitschi’
Vyushkov (a Stahleckeria-like form) and a generic-
ally indeterminate kannemeyeriid (Shishkin et al.
1995b, 2000a, b; Ivakhnenko et al. 1997; Battail &
Surkov 2000; Gower & Sennikov 2000).

Index fossils. The following tetrapod genera are
common and/or widespread enough to be index
fossils of the Berdyankian (Fig. 4): the cynodont
Massetognathus and the dicynodonts Dinodonto-
saurus and Stahleckeria. The LO of the amphibian
Mastodonsaurus giganteus is Berdyankian. An
acme in plagiosaur diversity and abundance charac-
terizes Berdyankian time. No procolophonids are
known from Berdyankian strata (Cisneros 2008a),
but this must be due to a lack of discovery, not a
real absence, as both pre- and post-Berdyankian
procolophonids are known.

Principal correlatives. The Lettenkohle (Lettenkeu-
per, Lower Keuper, Erfurt Formation) in Germany
and the Chanarian LVF localities in Argentina and
Brazil are the principal correlatives of the Berdyan-
kian type assemblage. The Lettenkohle record is
important because it establishes the Ladinian age
of at least part of the Berdyankian (see below).
The Lettenkohle fossils are from the Grenze
bonebed, the laterally equivalent/overlying
Vitriolschiefer and the Kupferzell locality, so they
are above the unconformity that separates the
Keuper from the underlying Muschelkalk. Letten-
kohle tetrapods include a chroniosuchian, the
amphibians Mastodonsaurus giganteus, Calli-
stomordax, Plagiosternum, Plagiosuchus and
Kupferzella, the rauisuchian Batrachotomus, the
prolacertiform Tanystropheus and small cynodonts
(e.g. Wild 1978, 1980; Schoch 1997, 2000a; Lucas
1999; Schoch & Werneburg 1999; Witzmann
et al. 2008; Damiani et al. 2009; Gower & Schoch
2009). A Dinodontosaurus-like humerus from the
Vitriolschiefer (Lucas & Wild 1995) may link the
Lettenkohle to the South American Chanarian.
However, a Dinodontosaurus-like radius is also
known from the upper Anisian interval of the
Muschelkalk in Germany, so this may indicate that
the Berdyankian also encompasses part of late
Anisian time (Lucas 2007b).

The Chañares local fauna from the Ischichuca
(formerlyChañares)Formationof theIschigualasto–
Villa Unión basin of northwestern Argentina
includes various archosaurs such as Tarjadia,
Lagerpeton, Marasuchus and Chanaresuchus, the
dicynodont Dinodontosaurus, the traversodontids
Massetognathus and Megagomphodon, the chini-
quodontid Probelesodon and the probainognathid

Probainognathus (Bonaparte 1970; Romer 1973;
Sereno & Arcucci 1993, 1994; Lucas & Harris
1996; Bonaparte 1997; Arcucci & Marsicano
1998; Hsiou et al. 2002). Bonaparte (1966, 1967,
1982) based the Chanarian ‘provincial age’ on
this assemblage.

The lower part of the Santa Maria Formation in
the Paraná basin of Rio Grande do Sul, Brazil
yields vertebrate fossil assemblages from Cande-
laria and Chiniquá considered by Barberena
(1977) and Barberena et al. (1985) to be two differ-
ent local faunas of different ages. Lucas (2002)
regarded them as a single biostratigraphic assem-
blage that includes a procolophonid, archosaurs,
the dicynodonts Dinodontosaurus and Stahleckeria,
chiniquodontids, and the traversodontids Massetog-
nathus, Belesodon, Traversodon, Exaeretodon,
Santacruzodo, Protuberum and Probelesodon (e.g.
Abdala & Ribeiro 2003; Cisneros et al. 2004;
Langer et al. 2007; Reichel et al. 2009). This ass-
emblage and the Chanarian type assemblage in
Argentina are assigned a Berdyankian age based
largely on their dicynodonts and traversodontids
and their stratigraphic position, which places them
between the Nonesian and the Adamanian.

Comments. Previously, I used the FAD of the genus
Mastodonsaurus to define the beginning of the Ber-
dyankian. This was based on a taxonomy in which
Mastodonsaurus (typified by the species M. gigan-
teus) was distinguished from the older (Perovkan)
Heptasaurus (e.g. Schoch 1999; Schoch & Milner
2000). However, taxonomists who study these
amphibians have suggested that Mastodonsaurus
and Heptasaurus be combined into a single genus,
Mastodonsaurus (Rayfield et al. 2009). Thus, I
now use the FAD of the species M. giganteus to
define the beginning of the Berdyankian so as not
to be subject to the shifting opinions of taxonomists
revising the genus-level taxonomy of stereospondyl
amphibians. This preserves the original intent of the
Berdyankian, as no temnospondyl worker has advo-
cated the synonymy of Heptasaurus cappelensis and
Mastodonsaurus giganteus at the species-level.

As noted by Lucas (1998a), global correlations
within the Berdyankian interval are confounded by
the near endemism of South American tetrapod
assemblages that are apparently of this age (the
Dinodontosaurus faunas of Argentina and Brazil,
classically assigned to the Chanarian LVA of
Bonaparte 1966, 1967). Recognition of Berdyankian-
age assemblages in Russia and Germany is rendered
easy by the presence of the key taxon Mastodon-
saurus giganteus (Lucas 1999).

The Berdyankian is difficult to correlate glob-
ally, largely because of a paucity of tetrapod assem-
blages of this age. Two clusters of localities
(European and South American) are equated,
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largely on the basis of the Lettenkohle dicynodont
and the conclusion that ‘Elephantosaurus’ is a ‘stah-
leckeriid’, possibly a synonym of Stahleckeria
(Lucas & Wild 1995). The South American Chanar-
ian LVF thus is the provincial secondary standard
correlative to the Berdyankian.

The Berdyankian may be relatively long, at least
correlative to the latest Anisian and Ladinian (see
below). Nevertheless, Berdyankian tetrapod fossil
assemblages probably only represent the earlier
part of this time interval. Indeed, the paucity of tetra-
pod assemblages of Berdyankian age represents one
of the most substantial deficits in the global record of
Triassic tetrapods. This is an important deficit
because many characteristic Late Triassic tetrapod
taxa, such as metoposaurs, phytosaurs, aetosaurs
and dinosaurs, so far lack evolutionary antecedents
that should occur in Berdyankian-age strata.

Otischalkian LVF

Definition. The Otischalkian LVF is the time inter-
val between the FADs of the phytosaurs Parasuchus
(¼ Paleorhinus) and Rutiodon (Fig. 1). Lucas &
Hunt (1993a) proposed the Otischalkian LVF
based on the vertebrate fossil assemblage of the Col-
orado City Formation of the Chinle Group near the
defunct town of Otis Chalk, Howard County,
Texas, USA (Lucas & Anderson 1993a, b, 1994,
1995; Lucas et al. 1993, 1994, 1997a). The begin-
ning of the Otischalkian is the FAD of Parasuchus.
The end of the Otischalkian is the beginning of the
Adamanian, which is defined by the FAD of the
phytosaur Rutiodon.

Characteristic tetrapod assemblage. The character-
istic tetrapod assemblage of the Otischalkian is the
assemblage of vertebrate fossils from just north of
the defunct town of Otis Chalk in Howard County,
Texas. Lucas et al. (1993) reviewed the fauna,
which is from the Colorado City Formation of the
Chinle Group. The following taxa are present: the
amphibians Latiscopus, Buettneria and Apache-
saurus, a procolophonid, the rhynchosaur Otis-
chalkia, the archosaurs Doswellia, Trilophosaurus
(¼ Malerisaurus) and Poposaurus, the aetosaurs
Longosuchus (¼ Lucasuchus) and Coahomasuchus,
and the phytosaurs Parasuchus and Angistorhinus
(Lucas et al. 1993; Long & Murry 1995; Heckert &
Lucas 1999; Spielmann et al. 2006c).

Index fossils. The following tetrapod genera are
restricted to Otischalkian time and are widespread
and/or common enough to be useful as index
fossils (Fig. 6): the aetosaur Longosuchus, and the
archosaur Doswellia. Parasuchus and Angistorhi-
nus are mostly of Otischalkian age, but also have
early Adamanian records. The dicynodont Placerias

has both Otischalkian and earliest Adamanian
records. The LOs of the widespread temnospondyl
Metoposaurus and of the rhynchosaur Hyperodape-
don are Otischalkian, and these taxa are also known
in Adamanian strata (Lucas et al. 2002a, 2007e).

Principal correlatives. Besides Chinle Group corre-
latives, principal Otischalkian vertebrate assem-
blages are from the Sanfordian interval of the
Newark Supergroup basins of eastern North
America; Schilfsandstein (Stuttgart Formation) of
the German Keuper; the Irohalene Member (T4) of
the Timesgadiouine Formation, Argana Group,
Morocco; and the basal part of the Maleri For-
mation, Pranhita–Godavari Valley, India.

Otischalkian principal correlatives and the
characteristic tetrapod assemblage encompass a
broad geographical range of Chinle Group outcrops
in Wyoming, New Mexico and Texas. They occur
in units of the lower part of the Chinle Group that
have been correlated with each other on a lithostrati-
graphic basis (Lucas 1993b). The most well-known
principal correlative of the type Otischalkian fauna
in the Chinle Group is the vertebrate-fossil assem-
blage from the Popo Agie Formation of Wyoming,
principally Fremont County (Branson & Mehl
1928; Mehl 1928; Colbert 1957; Lucas 1994; Lucas
et al. 2002a) that includes the amphibian Buettneria,
the phytosaurs Parasuchus and Angistorhinus, the
aetosaur Desmatosuchus, the archosaurs Popo-
saurus and Heptasuchus, the rhynchosaur Hypero-
dapedon, and the dicynodont Placerias. A less
well-known principal correlative is the small assem-
blage from the Salitral Formation in Rio Arriba
County, New Mexico that consists of a metoposaur,
Longosuchus, a phytosaur, and an indeterminate
dinosaur (Lucas & Hunt 1992). Heckert (2004;
Heckert & Lucas 2006) provided some microverte-
brate basis for recognition of the Otischalkian in
Chinle Group strata, such as the LO of the ‘dino-
saur’ Protecovasaurus and the archosaur Trilopho-
saurus buettneri (also see Spielmann et al. 2008).

In the Newark Supergroup of eastern North
America, the stratigraphically lower formations of
the Deep River, Gettysburg, Newark and Fundy
basins contain two distinct vertebrate fossil assem-
blages. The older of these was used by Huber
et al. (1993b) as the basis of the Sanfordian LVF,
after the characteristic assemblage from the
middle Pekin Formation in the Sanford sub-basin
of the Deep River basin complex. An age-equivalent
assemblage from the middle Wolfville Formation
(Fundy basin) is also assigned to this LVF. The col-
lective Newark tetrapod fauna of this Sanfordian
LVF includes the amphibian Metoposaurus, proco-
lophonids, the traversodontids Arctotraversodon
and Plinthogomphodon, the dicynodont Placerias,
the rhynchosaur Hyperodapedon, the archosaur
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Doswellia, the aetosaurs Desmatosuchus and Long-
osuchus, indeterminate rauisuchians (‘Zamotus’),
the rauisuchian Postosuchus, the ‘sphenosuchian’
Dromicosuchus, indeterminate phytosaur fragments
and fragmentary dinosaur remains (e.g. Cope 1871;
Olsen et al. 1989; Hunt & Lucas 1990; Huber et al.
1993a; Hunt 1993; Sues et al. 1994, 1999, 2003;
Langer et al. 2000b; Lucas et al. 2002a; Peyer
et al. 2008; Dilkes & Sues 2009). The Sanfordian
correlates with the Chinle Group Otischalkian
LVF based on the shared presence of Buettneria,
Hyperodapedon, Desmatosuchus, Longosuchus,
Doswellia, and Placerias.

In Germany, the Schilfsandstein produces Meto-
posaurus and Parasuchus but lacks Stagonolepis, so
it can be assigned an Otischalkian age (Hunt &

Lucas 1991; Lucas 1999; Schoch & Werneburg
1999; Hungerbühler 2001b).

The500-m-thick IrohaleneMemberof theTimes-
gadiouine Formation (interval T-5 of Dutuit 1966;
Tixeront 1971) has produced most of the Late Trias-
sic vertebrate fauna from Morocco. It contains the
majority of vertebrate fossil localities described by
Dutuit (1972, 1976, 1977, 1988, 1989a, b). Most of
these occur in the lower part of the member and
have produced a moderately diverse fauna that
includes the amphibians Almasaurus and Dutuito-
saurus, the phytosaur Parasuchus, the aetosaur
Longosuchus, the dicynodont Placerias (¼ Mog-
hreberia, ¼ Azarifeneria: Cox 1991; Lucas & Wild
1995), the dinosauriform Azendohsaurus (Gauffre
1993; Lucas 1998b; Jalil 1999) and at least one
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Fig. 6. Temporal ranges of selected genera of Late Triassic tetrapods.
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ornithischian dinosaur. Several of Dutuit’s (1976)
localities occur in the upper part of the Irohalene
Member, which is a distinct faunal horizon that
includes the amphibian Arganasaurus, the phytosaur
Angistorhinus, and the dicynodont Placerias. The
presence of Parasuchus, Angistorhinus, Longosu-
chus and Placerias supports assigning the Irohalene
Member tetrapod assemblage(s) an Otischalkian age.

In the Pranhita–Godavari Valley of India, the
basal Maleri Formation produces a tetrapod assem-
blage that includes the amphibian Metoposaurus,
the rhynchosaur Paradapedon, the phytosaur Para-
suchus, the archosaur ‘Malerisaurus’, an aetosaur,
the theropod dinosaur Alwalkeria, a prosauropod
(‘cf. Massospondylus’ of Kutty & Sengupta 1989),
a large dicynodont, and the cynodont Exeraetodon
(e.g. Huene 1940; Jain et al. 1964; Roychowdhury
1965; Chatterjee 1967, 1974, 1978, 1980a, 1982,
1987; Chatterjee & Roychowdhury 1974; Jain &
Roychowdhury 1987; Bandyopadhyay & Sengupta
2006; Spielmann et al. 2006c). This is the only well-
described Upper Triassic tetrapod assemblage from
the Pranhita–Godavari Valley. It includes Parasu-
chus and Metoposaurus, taxa indicative of a likely
Otischalkian age.

Comments. The Otischalkian LVF was originally
defined as the time between the FADs of the phyto-
saurs Parasuchus (¼ Paleorhinus) and Rutiodon
(Lucas & Hunt 1993a; Lucas et al. 1997a; Lucas
1998a). It is important to note that a little advertised
petition to the International Commission on Zoolo-
gical Nomenclature by Chatterjee (2001) resulted in
establishing a diagnostic lectotype for Parasuchus
(long a nomen dubium: Hunt & Lucas 1991), so
that this name should be regarded as the senior
synonym of Paleorhinus (Lucas et al. 2007c). Fur-
thermore, even though Hunt & Lucas (1991) pro-
vided a careful taxonomic revision of Parasuchus,
and provided a clear diagnosis of the genus that
has never been contested, some taxonomists have
relegated all primitive phytosaurs to a metataxon
(grade) and then claimed these phytosaurs (long
and widely known as Paleorhinus/Parasuchus)
are of no value to biostratigraphy (e.g. Fara &
Hungerbühler 2000; Rayfield et al. 2005, 2009). I
reject such an approach to primitive phytosaur tax-
onomy and recognize Parasuchus as a diagnosable
genus (Lucas et al. 2007c).

I have long regarded Parasuchus as a robust
index taxon of the Otischalkian (Hunt & Lucas
1991; Lucas et al. 2007c, d). However, recently
developed Upper Triassic conchostracan biostrati-
graphy (Kozur & Weems 2005, 2007) and European
records of the characteristic Adamanian aetosaur
Stagonolepis suggest that some Parasuchus records
should be considered early Adamanian in age (Kozur
& Weems 2005). Thus, if all Stagonolepis records

are regarded as Adamanian (as they were by Lucas
1998a), and the conchostracan-based correlations
of the Adamanian are accepted, then records of
Parasuchus from the German Kieselsandstein and
Blasensandstein and the Polish Krasiejów locality
are Adamanian. This is also consistent with the
Chinle Group record of Parasuchus at the Placer-
ias/Downs quarries in the Bluewater Creek For-
mation of the Chinle Group in Arizona, in what I
have regarded as oldest Adamanian strata (Lucas
et al. 1997a). Thus, recognizing that Parasuchus
records are not strictly Otischalkian (some are
early Adamanian: Fig. 6), and that Stagonolepis
records are strictly Adamanian, clarifies correlation
in the Otischalkian–Adamanian interval.

The Otischalkian index taxa Longosuchus (¼
Lucasuchus) and Doswellia still stand. Metopo-
saurus also has only Otischalkian and early Adama-
nian records, though Milner & Schoch (2004)
recently claimed its presence in the Revueltian
Stubensandstein of Germany, a claim that met a
detailed refutation from Lucas et al. (2007e). The
last Otischalkian index fossil listed by Lucas
(1998a) is the phytosaur Angistorhinus. Its records
are Otischalkian (Long & Murry 1995) except
one, near Lamy, New Mexico, USA, where it
co-occurs with Rutiodon in the earliest Adamanian
(Hunt et al. 1993, 2005) (Fig. 7).

Adamanian LVF

Definition. The Adamanian is the time interval
between the FAD of the phytosaur Rutiodon and
the FAD of the aetosaur Typothorax coccinarum
(Fig. 1). Lucas & Hunt (1993a) based the Adama-
nian LVF on the vertebrate fauna of the Blue
Mesa Member of the Petrified Forest Formation in
the Petrified Forest National Park, Arizona, USA
(Lucas 1993b; Lucas & Hunt 1993a; Lucas et al.
1997a). Lucas (1998a) termed this the Rutiodon
Assemblage Zone. The beginning of the Adamanian
is defined as the FAD of the phytosaur Rutiodon.
The end of the Adamanian is the beginning of the
Revueltian, which is defined by the FAD of the
aetosaur T. coccinarum.

Characteristic tetrapod assemblage. The character-
istic tetrapod assemblage of the Adamanian is the
assemblage of vertebrate fossils found in the Blue
Mesa Member of the Petrified Forest Formation in
the Petrified Forest National Park, near the defunct
railroad siding of Adamana, Arizona. Recent
faunal lists have been provided by Murry & Long
(1989), Long & Murry (1995), Heckert et al.
(2005a) and Parker et al. (2006). The fauna includes
the following tetrapods: the amphibians Apache-
saurus and Buettneria, the aetosaurs Desmatosuchus
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(¼ Acaenasuchus), Stagonolepis, Adamanasuchus
and Paratypothorax, Rutiodon-grade phytosaurs
(including Leptosuchus and Smilosuchus), the raui-
suchian Postosuchus, the archosaurs Hesperosu-
chus, Acallosuchus, Parrishea and Vancleavea,

and the dicynodont Placerias, as well as many
microvertebrate taxa.

Index fossils. The following tetrapod genera are
restricted to Adamanian time and are widespread
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and/or common enough to be useful as index fossils
(Fig. 6): Rutiodon-grade phytosaurs, including Lep-
tosuchus and Smilosuchus, the trilophosaurid archo-
saur Spinosuchus and the aetosaur Stagonolepis. The
HO of dicynodonts was long thought to be Adama-
nian. However, there is a putative Cretaceous
record from Australia (Thulborn & Turner 2003),
and Dzik et al. (2008) recently reported a Triassic
dicynodont from Poland in strata they deemed Rhae-
tian based on palaeobotany. The HO of the wide-
spread rhynchosaur Hyperodapedon is Adamanian
(Lucas & Heckert 2001; Lucas et al. 2002a)
(Fig. 8). Within the Chinle Group, various microver-
tebrate taxa, including Colognathus, Tecovasurus,
and Crosbysaurus, are index taxa of the Adamanian
(Heckert 2004; Heckert & Lucas 2006).

Principal Correlatives. Besides the Chinle Group
correlatives, major Adamanian faunas are those
of the Conewagian interval of the Newark Super-
group basins of eastern North America; Lossie-
mouth Sandstone Formation, Scotland; Lehrberg
Schichten interval of the German Keuper; the Kra-
siejów locality in Poland; Ischigualasto Formation,
Argentina; and upper Santa Maria Formation,
Brazil.

In the Chinle Group, Adamanian vertebrates are
widespread and include the vertebrate fossil assem-
blages of the Placerias and Downs’ quarries, Blue-
water Creek Formation, Arizona (Camp & Welles
1956; Kaye & Padian 1994; Long & Murry 1995;
Lucas et al. 1997a; Heckert 2004; Heckert et al.
2005a); the Bluewater Creek Formation and Blue
Mesa Member of the Petrified Foreset Formation
in the Blue Hills, Arizona; the Bluewater Creek For-
mation and Blue Mesa Member of the Petrified
Forest Formation, McKinley and Cibola counties,
New Mexico (Heckert 1997); the Los Esteros and
Tres Lagunas members, Santa Rosa Formation,
vicinity of Lamy, Santa Fe County, New Mexico
(Hunt et al. 2005) (Fig. 7); Garita Creek Formation,
Santa Rosa and vicinity, Guadalupe County, New
Mexico (Hunt & Lucas 1993a); and Tecovas For-
mation, West Texas (Murry 1986, 1989; Long &
Murry 1995).

The fauna at the Placerias and Downs’ quarries
has most recently been discussed by Kaye &
Padian (1994), Long & Murry (1995), Lucas et al.
(1997a) and Heckert (2004). It includes the
amphibians Buettneria and Apachesaurus, the pro-
lacertiform Tanytrachelos, the phytosaurs Parasu-
chus and Rutiodon/Leptosuchus, the aetosaurs
Stagonolepis and Desmatosuchus (¼ Acaenasu-
chus), the rauisuchid Postosuchus, the archosaurs
Trilophosaurus, Acallosaurus, Poposaurus, Chat-
terjeea, Hesperosuchus, Tecovasaurus and cf.
Uatchitodon, an indeterminate ceratosaur and the
dicynodont Placerias.

The following tetrapod taxa are known from the
Los Esteros Member, Santa Rosa Formation, near
Lamy, New Mexico: the amphibian Apachesaurus,
the phytosaurs Rutiodon and Angistorhinus, the
aetosaurs Desmatosuchus, Tecovasuchus and
Stagonolepis and the dicynodont cf. Ischigualastia
(Hunt & Lucas 1993a, 1994; Hunt et al. 2005;
Heckert et al. 2007b). The overlying Garita Creek
Formation contains the following taxa: the amp-
hibian Buettneria, phytosaurs, rauisuchians, and
the aetosaurs Desmatosuchus, Stagonolepis and
Paratypothorax (Hunt et al. 2005).

The Tecovas Formation of West Texas yields the
following tetrapod taxa: the amphibians Buettneria
and Apachesaurus, the probable tetrapod Colog-
nathus, the archosauromorphss Trilophosaurus,
Parrishea, Tecovasaurus, and Crosbysaurus, the
phytosaurs Rutiodon, Leptosuchus and Smilosuchus,
the aetosaurs Desmatosuchus and Stagonolepis, the
rauisuchian Postosuchus, and the oldest known
mammal, Adelobasileus (Lucas & Luo 1993;
Lucas et al. 1994; Long & Murry 1995; Spielmann
et al. 2008).

In the Deep River basin of North Carolina, an
assemblage of the Conewagian LVF from the
Cumnock Formation is superposed on the character-
istic Sanfordian assemblage. Conewagian assem-
blages are characterized by the tetrapod assemblage
in the basal Gettysburg Formation (Kozur &
Weems 2010) along Little Conewago Creek in
south-central Pennsylvania (Gettysburg basin:
Huber et al. 1993b; Sullivan et al. 1995; Lucas &
Sullivan 1997) and also are known from the Cow
Branch Formation (Dan River basin), and upper
Stockton and Lockatong formations (Newark
basin). The most widespread and characteristic Con-
ewagian tetrapod is the phytosaur Rutiodon, which
co-occurs with the amphibian Buettneria, archosaurs
of uncertain affinity, an aetosaur (Desmatosuchus),
one or more ‘ornithischian dinosaurs’ (e.g. Pekino-
saurus and Galtonia), the archosaur Tanytrachelos
(¼ ?Gwyneddosaurus) and the lepidosauromorph
Icarosaurus (e.g. Emmons 1856; Olsen 1980,
1988; Olsen et al. 1989; Sues 1992; Huber et al.
1993a; Hunt 1993; Hunt & Lucas 1994; Doyle &
Sues 1995; Lucas & Huber 2003). Conewagian
assemblages correlate with the Adamanan LVF of
the Chinle Group, based on the shared presence of
Buettneria, Rutiodon and other Rutiodon-grade
phytosaurs (Smilosuchus of Long & Murry 1995),
Desmatosuchus and broadly similar ‘ornithischian
dinosaurs’ (e.g. Murry & Long 1989; Lucas et al.
1992, 1997a; Huber et al. 1993b; Hunt 1993; Hunt
& Lucas 1994; Heckert 2004).

The tetrapod assemblage of the Lossiemouth
Sandstone Formation of Grampian (Elgin) Scotland
comes from small quarries and the coastal section at
Lossiemouth. Benton & Spencer (1995) provided a
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detailed summary and indicate that all sites come
from a narrow stratigraphic range, so I treat the ver-
tebrates as a single biostratigraphic assemblage.
It includes the procolophonid Leptopleuron, the
sphenodontid Brachyrhinodon, the rhynchosaur
Hyperodapedon, the aetosaur Stagonolepis, the
ornithosuchid Ornithosuchus, the crocodylomorph
Erpetosuchus, the probable ornithodiran Scleromo-
chlus and the ‘dinosaur’ Saltopus. The presence of
Hyperodapedon and Stagonolepis supports corre-
lation of this assemblage to the Chinle Group
Adamanian.

In Germany, the stratigraphic interval between
the Schilfsandstein and the Stubensandstein (Lehr-
berg Schichten, Blasensandstein and Kieselsan-
dandstein) produces Stagonolepis, Parasuchus and
Metoposaurus (e.g. Lucas 1999), and is assigned
an Adamanian age (Kozur & Weems 2005).

In Poland, the Krasiejów tetrapod assemblage
includes the amphibians Cyclotosaurus and Meto-
posaurus, the phytosaur Parasuchus, the aetosaur
Stagonolepis, the rauisuchian Teratosaurus and the
dinosauriform Silesaurus (Dzik 2001, 2003; Sulej
2002, 2005, 2007; Sulej & Majer 2005; Dzik &
Sulej 2007; Lucas et al. 2007d ). This assemblage
is from strata c. 80 m above the Reed Sandstone
(a Schilfsandstein equivalent) that are homotaxial
to the German Lehrberg Schichten and is of
Adamanian age.

In Argentina, the Ischigualasto Formation is
500–900 m thick and consists of drab mudstones,
tuffs and sandstones that produce an extensive
tetrapod assemblage including: the amphibian
Promastodonosaurus, the archosaurs Saurosuchus,
Sillosuchus, and Proterochampsa, the aetosaur
Stagonolepis (¼ Aetosauroides), the rhynchosaur
Hyperodapedon, the dinosaurs Herrerasaurus (¼
?Ischisaurus ¼ Frenguellisaurus), Eoraptor and
Pisanosaurus, the chiniquodontid cynodont Chini-
quodon, the gomphodont cynodonts Exeraetodon,
Proexaraetodon, and Ischignathus and the dicyno-
dont Ischigualastia (e.g. Cabrera 1944; Reig 1959,
1961, 1963; Casamiquela 1960, 1962; Cox 1965;
Bonaparte 1976; Rogers et al. 1993; Sereno et al.
1993; Bonaparte 1997; Alcober & Parrish 1997;
Heckert & Lucas 2002c). The assemblage slightly
overlaps and mostly overlies the Herr Toba bentonite
that yielded a 40Ar/39Ar age of 227.8 + 0.3 Ma
(Rogers et al. 1993), which was ‘recalculated’ to
231.4 Ma by Irmis and Mundil (2008).

In Brazil, the principal Upper Triassic vertebrate
assemblage from the Santa Maria Formation is
from the vicinity of Santa Maria City. This is the
Rhynchocephalia assemblage zone of Barberena
(1977) or the Scaphonyx assemblage of Barberena
et al. (1985), from the upper part of the Santa
Maria Formation. The assemblage consists of abun-
dant fossils of the rhynchosaur Hyperodapedon and

the aetosaur Stagonolepis (¼ Aetosauroides); tra-
versodontids, proterochampsids; the archetypal
rauisuchian Rauisuchus and the primitive dinosaur
Staurikosaurus (Barberena et al. 1985; Lucas 2002;
Lucas & Heckert 2001; Langer et al. 2007). Clearly,
the presence of Scaphonyx and Stagonolepis (‘Aeto-
sauroides’) supports correlation with the vertebrates
of the Ischigualasto Formation in Argentina, and
therefore an Adamanian (¼ Ischigualastian) age
(Lucas & Heckert 2001; Heckert & Lucas 2002c;
Lucas 2002).

The tetrapod assemblage of the Caturrita For-
mation, which overlies the Santa Maria Formation,
includes a mastodonsauroid amphibian, the spheno-
dont Clevosaurus, the rhynchosaur Hyperodapedon,
the proterochampsid Proterochampsa, the dinosaurs
Guabisaurus and Saccasaurus, a phytosaur, the
cynodonts Exaeretodon and Riograndia, the dicy-
nodont Ischigualastia (¼ Jachaleria) and cyno-
donts (Araújo & Gonzaga 1980; Barbarena et al.
1985; Dornelles 1990; Bonaparte et al. 1999,
2001; Kischlat & Lucas 2003; Ferigolo & Langer
2006; Bonaparte & Sues 2006; Bonaparte et al.
2007; Langer et al. 2007; Dias-da-Silva et al. 2009).

Most South American workers (e.g. Bonaparte
1982; Barberena et al. 1985; Langer 2005a; Rubert
& Schultz 2004; Dias-da-Silva et al. 2007; Langer
et al. 2007) advocate dividing the Brazilian Upper
Triassic tetrapod succession into two biostratigra-
phically distinct assemblages largely based on their
judgment that the dicynodonts Jachaleria and Ischi-
gualastia are not the same taxon. They, therefore,
correlate the Brazilian Caturrita Formation to the
Argentinian Los Colorados Formation. Langer
(2005b) also claimed that the Ischigualastian ¼
OtischalkianþAdamanian, largely based on not
recognizing the temporal range of Hyperodapedon
as longer than the temporal range of the Ischigua-
lastian. I do not accept either evaluation of the
Brazilian Upper Triassic tetrapod biostratigraphy
(Lucas 2002).

In the Pranhita–Godavari Valley of India, the
upper vertebrate fossil assemblage from the Maleri
Formation is stratigraphically above the lower
assemblage, but its stratigraphic range is not clear.
This upper assemblage includes an aetosaur, pro-
sauropods and a large dicynodont. Chigutisaurid
amphibians (Compsocerops and Kuttycephalus:
Sengupta 1995) and a ‘Rutiodon-like’ phytosaur
are also present (Bandyopadhyay & Sengupta
2006). Therefore, this assemblage may be Adama-
nian, but needs further documentation.

In western Madagascar, the Isalo group (‘Groupe
d l’Isalo’ of Besarie 1930; also see Besarie &
Collignon 1960, 1971) has long been divided into
Isalo I, Isalo II and Isalo III based on perceived geo-
logical age. The Isalo II strata yield Late Triassic
tetrapods, including metoposaurs, sphenodontids,
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phytosaurs, the rhynchosaur Hyperodapedon, the
aetosaur Desmatosuchus, the archosaur Azendoh-
saurus, cynodonts and dicynodonts (Guth 1963;
Westphal 1970; Dutuit 1978; Buffetaut 1983; Flynn
et al. 1999, 2000, 2008; Langer et al. 2000a;
Lucas et al. 2002a; Burmeister et al. 2006). The
stratigraphic range of the Isalo II tetrapods is
c. 1200 m, but the rhynchosaur Hyperodapedon is
one of the stratigraphically lowest taxa in the assem-
blage. This means the Isalo assemblage is no older
than Otischalkian and, based on the Desmatosuchus
record, likely to be Adamanian.

Comments. Lucas (1998a) listed as Adamanian
index fossils the rhynchosaur Scaphonyx, the aeto-
saur Stagonolepis and Rutiodon-grade phytosaurs
(including Leptosuchus and Smilosuchus). The
dicynodont Ischigualastia (¼ Jachaleria) was also
considered an Adamanian index taxon. Taxonomic
revisions and range extensions have necessitated a
reconsideration of some of these index taxa.

Stagonolepis now co-occurs with Parasuchus at
Krasiejów in southern Poland (Dzik 2001; Lucas
et al. 2007d). This lends support to Heckert &
Lucas’ (2000) conclusion that Ebrachosaurus sin-
gularis Kuhn 1936, from the Adamanian German
Blasensandstein (type destroyed in World War II),
was based on specimens of Stagonolepis. These
European Adamanian records of Stagonolepis are
consistent with regarding its stratigraphically lowest
records in North America, such as at the Placerias/
Downs quarries in Arizona, as early Adamanian
(Lucas et al. 1997a).

An extensive revision of Late Triassic rhyncho-
saurs (Langer & Schultz 2000; Langer et al.
2000a, b) indicates that specimens previously
assigned to Scaphonyx are mostly of Hyperodape-
don. Lucas et al. (2002a) reviewed these records
in detail and demonstrated that a Hyperodapedon
biochron is of Otischalkian and Adamanian age
(Fig. 8). Thus, the rhynchosaur Hyperodapedon
cannot be used to discriminate the Otischalkian
and Adamanian.

Largely based on this, Langer (2005a, b; also see
Schultz 2005) claimed that the Otischalkian and
Adamanian cannot be distinguished and they should
be abandoned and replaced by a single LVF, the
Ischigualastian. To do so, Langer (2005b) dismissed
phytosaur-based distinctions of the Otischalkian and
Adamanian, basing his rejection largely on the cla-
dotaxonomy of primitive phytosaurs advocated in
published abstracts by Hungerbühler (2001a; Hun-
gerbühler & Chatterjee 2002). Langer (2005b) also
rejected aetosaur-based correlations based on the
taxonomy of South American aetosaurs published
by Heckert & Lucas (2000) and Lucas & Heckert
(2001). Thus, Langer (2005b, p. 228) states that
‘Stagonolepis wellesi lacks a unique ornamentation

pattern of its dorsal paramedian osteoderms’, con-
trary to the published work of Lucas & Heckert, as
well as those of Long & Ballew (1985), Parrish
(1994), Long & Murry (1995) and Parker (2007),
among others.

Langer (2005b) also used the conclusions of
Sulej (2002) regarding the taxonomy of Metopo-
saurus and Buettneria to question using amphibians
to distinguish the Otischalkian and Adamanian.
However, a review of the metoposaur specimens
described by Sulej (2002) does not support some
of his basic anatomical observations or his taxon-
omy (Lucas et al. 2007d). Rayfield et al. (2005,
2009) also argued for merging of the Otischalkian
and Adamanian based largely on the same argu-
ments as Langer (2005b), but Lucas et al. (2007e)
have presented a detailed refutation of their
arguments.

What these workers have failed to recognize is
that: (1) Otischalkian and Adamanian tetrapod
assemblages are stratigraphically superposed and
readily distinguished in the Chinle Group of the
American Southwest; (2) there is no evidence that
the ‘Ischigualastian’ of South America is Otischalk-
ian and much more evidence that it is Adamanian,
so Ischigualastian should not be redefined to encom-
pass both Otischalkian and Adamanian time; and (3)
recognition of distinct Otischalkian and/or Adama-
nian assemblages has been achieved in North
America, South America, Europe, India and North
Africa (e.g. Fig. 8). The fact that Langer (2005b)
and Rayfield et al. (2005, 2009) do not accept a
well-documented alpha taxonomy of Otischalkian
and Adamanian index fossils is not a valid reason
to merge the Otischalkian and Adamanian LVFs.

Recent work in the Chinle Group of the western
USA has refined the stratigraphic ranges of known
tetrapod taxa and has produced new records in
strata of Adamanian age. These new data are princi-
pally from the Petrified Forest National Park in
Arizona (Heckert & Lucas 2002a; Hunt et al.
2002; Woody 2003, 2006; Heckert 2004; Woody &
Parker 2004; Heckert et al. 2005a) and the extensive
exposures of the Chinle Group in east–central
New Mexico (Lucas et al. 2001, 2002b), though
there are also other new records from the Tecovas
and Trujillo formations in Texas (Heckert 2004;
Heckert et al. 2006; Martz & Small 2006).
Clearly, there is a ‘transitional’ fauna between the
Adamanian and Revueltian LVFs (Woody &
Parker 2004), and this prompted Hunt et al. (2005)
to subdivide the Adamanian into two sub-
faunachrons, St. Johnsian (older) and Lamyan
(younger), of regional biochronological significance
(Fig. 7). The aetosaur Tecovasuchus is a St. Johnsian
index taxon (Heckert et al. 2007b), whereas the
aetosaur Typothorax antiquum is a Lamyan index
taxon (Hunt et al. 2005).
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Heckert & Lucas (2006) built upon the micro-
vertebrate collections documented by Heckert
(2001, 2004) to demonstrate that there are multiple
microvertebrate index taxa of Adamanian
(St. Johnsian) time, including the xenacanth ‘Xena-
canthus’ moorei, the enigmatic tetrapod Colog-
nathus obscurus and the archosaurs (possibly
ornithischian dinosaurs) Tecovasaurus murryi,
Crosbysaurus harrisae, and Krzyzanowskisaurus
hunti. So far, these taxa are presently known only
from the Chinle Group of the American Southwest,
so they may not be of broad biostratigraphic utility.

Revueltian

Definition. The Revueltian is the time interval
between the FAD of the aetosaur Typothorax cocci-
narum and the FAD of the phytosaur Redonda-
saurus (Fig. 1). Lucas & Hunt (1993a) introduced
the term Revueltian LVF to refer to the time equiv-
alent to the vertebrate fossil assemblage of the Bull
Canyon Formation in east–central, New Mexico,
USA (Lucas et al. 1985; Hunt 1994, 2001; Hunt &
Lucas 1997). Lucas (1998a) termed this the Pseudo-
palatus Assemblage Zone. The name of the LVF is
for Revuelto Creek, one of the key collecting areas
in eastern New Mexico. Revueltian time begins
with the FAD of the aetosaur T. coccinarum. The
end of the Revueltian is the beginning of the Apa-
chean, which is defined by the FAD of the phytosaur
Redondasaurus.

Characteristic tetrapod assemblage. The character-
istic tetrapod assemblage of the Revueltian is that of
the Bull Canyon Formation in east–central New
Mexico (Quay and Guadalupe counties), and the
following taxa are present: the amphibian Apache-
saurus, the turtle Chinlechelys, the phytosaur
Pseudopalatus and other Pseudopalatus-grade
phytosaurs, the aetosaurs Rioarribasuchus, Paraty-
pothorax, Typothorax coccinarum, and Aetosaurus,
the suchian Revueltosaurus, the ‘dinosaur’ Luciano-
saurus, the rauisuchian Postosuchus, the chatter-
jeeids Shuvosaurus (¼ Effigia) and Chatterjeea,
the sphenosuchian Hesperosuchus; and the cynodont
Pseudotriconodon (e.g. Hunt 1994, 2001; Lucas
et al. 2001; Joyce et al. 2009).

Index fossils. The following tetrapod taxa are
restricted to Revueltian time and are widespread
and/or common enough to be useful as index
fossils: the crurotarsan Revueltosaurus, the aeto-
saurs Aetosaurus, Rioarribasuchus and Typothorax
coccinarum, and Pseudopalatus-grade phytosaurs.
The pterosaur Eudimorphodon is present in Revuel-
tian assemblages in Italy and Greenland (e.g. Jenkins
et al. 2001; Dalla Vecchia 2003, 2006) and can
also be considered a Revueltian index taxon (but

see Dalla Vecchia 2009). The stratigraphic co-
occurrence of dinosaurs and dinosauromorphs
(Sullivan & Lucas 1999; Ezcurra 2006; Irmis et al.
2007; Nesbitt et al. 2007, 2009; Spielmann et al.
2007b; Nesbitt & Chatterjee 2008) also aids in
recognition of Revueltian time.

Principal correlatives. Besides Chinle Group
assemblages, which are primarily from Texas, New
Mexico and Arizona (e.g. Zeigler et al. 2003;
Heckert et al. 2005a, b; Parker et al. 2006;
Spielmann et al. 2007a, b; Nesbitt & Stocker
2008), the principal Revueltian tetrapod assem-
blages are those of the Newark Supergroup of
eastern North America of Neshanician and Clifto-
nian (part) age; Ørsted Dal Member of the Fleming
Fjord Formation, Greenland; Stubensandstein (Löw-
enstein Formation) of the German Keuper; Calcare
di Zorzino (Zorzino Limestone) and Dolomia di
Forni (Forni Dolomite), northern Italy; and lower
part of Dharmaran Formation, India.

In West Texas-eastern New Mexico, the Bull
Canyon Formation of the Chinle Group yields exten-
sive assemblages of Revueltian tetrapods, including
the characteristic tetrapod assemblage (e.g. Hunt
2001; Lehman & Chatterjee 2005). In the Chama
basin of north–central New Mexico, the Petrified
Forest Formation of the Chinle Group also yields
Revueltian tetrapods, especially from the Snyder
and Canjilon phytosaur-dominated bonebeds
(Zeigler et al. 2003; Heckert et al. 2005b; Nesbitt
& Stocker 2008). In northern Arizona, two Chinle
Group units, the Painted Desert Member of the Pet-
rified Forest Formation and the overlying Owl
Rock Formation, have produced numerous Revuel-
tian fossils, especially from the Petrified Forest
National Park and from localities on Ward’s
Terrace north of Flagstaff (e.g. Kirby 1989, 1991,
1993; Heckert et al. 2005a; Spielmann et al. 2007a).

In eastern North America, the provincial Nesha-
nician LVF is based on a limited fossil assemblage
typified by the aetosaur Aetosaurus arcuatus
(Lucas et al.1998a; Lucas & Huber 2003). This
taxon is present in ‘Lithofacies Association II’ of
the Chatham Group (Durham sub-basin of the
Deep River basin), the Newark Basin (range zone:
Warford through Neshanic Members of the lower
Passaic Formation), and the middle New Haven
Arkose of central Connecticut. Other vertebrates
from the Neshanician LVF include indeterminate
metoposaurid and phytosaur teeth, skull and scute
fragments (e.g. ‘Belodon validus’), a rauisuchian,
crocodylomorph, traversodontid and a sphenodontid
(lower New Haven Arkose) as well as a dominance
of the primitive neopterygian Semionotus sp. over
other fish taxa, a trend also apparent in age-
equivalent strata of the Chinle Group and German
Keuper (Huber et al. 1993c; Lucas & Huber 2003).
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The Cliftonian LVF is based on a low-diversity
assemblage defined by the distribution of the proco-
lophonid Hypsognathus fenneri. This taxon is
common in the type area, from the middle (?Mettlars
Member) to the upper (?Member TT) Passaic For-
mation of the northern Newark basin (e.g. Baird
1986). It is also known from the upper New Haven
Arkose of the Hartford basin, central Connecticut,
and the basal Blomidon Formation in the Fundy
basin, Nova Scotia (Sues et al. 1997). The Fundy
basin specimen of Hypsognathus was obtained
from pebble conglomerate at the base of the Blomi-
don Formation, which unconformably overlies the
Wolfville Formation. The only other vertebrates
that occur in the interval of Cliftonian age are inde-
terminate phytosaur remains (including the holotype
of ‘Clepsysaurus pennsylvanicus’ Lea 1851) from
the Ukrainian Member of the Passaic Formation in
the Newark basin, moderately diverse tetrapod foot-
print assemblages at many horizons in the Passaic
Formation (e.g. Szajna & Silvestri 1996; Lucas &
Sullivan 2006), and an indeterminate sphenodontid
from the upper New Haven Arkose (Olsen 1980;
Sues & Baird 1993; Lucas & Huber 2003).

The Malmos Klint and overlying Ørsted Dal
Members of the Fleming Fjord Formation in
eastern Greenland yield fossil tetrapods of Revuel-
tian age (Jenkins et al. 1994, 1997, 2008). The
Malmos Klint Member has produced fragmentary
fossils of plagiosaurid amphibians, the amphibian
Cyclotosaurus, possible phytosaur fragments and the
prosauropod dinosaur Plateosaurus. The Ørsted Dal
Member assemblage is much more diverse: the
amphibians Gerrothorax and Cyclotosaurus, the
turtle cf. Proganochelys, unidentified sphenodon-
tians, the aetosaurs Aetosaurus and Paratypothorax,
the pterosaur Eudimorphodon, the prosauropod
dinosaur ‘Plateosaurus’, a theropod dinosaur, ther-
opod dinosaur footprints (Grallator), and the
mammals Kuehneotherium, cf. ?Brachyzostrodon
and Haramiyavia. As Jenkins et al. (1994) argued,
this assemblage shares many taxa with the German
Stubensandstein. More specifically, other than Pla-
teosaurus, most taxa from the Ørsted Dal Member
are known in the Lower Stubensandstein, to which
I correlate the Greenland assemblage.

In Germany, the best known and most diverse
Keuper tetrapod assemblage is that of the Lower
Stubensandstein (Löwenstein Formation). This
assemblage includes the amphibians Cyclotosaurus
and Gerrothorax, the earliest European turtles (Pro-
ganochelys and Proterochersis), Pseudopalatus-
grade phytosaurs (Nicrosaurus), the aetosaurs
Aetosaurus and Paratypothorax, rauisuchians (Ter-
atosaurus), theropod dinosaurs, and the prosauro-
pod dinosaurs Sellosaurus and Thecodontosaurus
(e.g. Benton 1993; Hungerbühler 1998; Lucas 1999;
Schoch & Werneburg 1999; Schoch 2007). The

phytosaurs, aetosaurs, and rauisuchians provide a
strong basis for assigning a Revueltian age to the
Lower Stubensandstein (Lucas & Hunt 1993a;
Hunt 1994; Lucas 1999). The younger, Middle and
Upper Stubensandstein, produce a similar, but less
diverse assemblage, so I also assign them a Revuel-
tian age. Whether or not the lowest occurrence of
Mystriosuchus in the Middle Stubensandstein is of
biochronologic significance is not clear. The assem-
blages of the Upper Stubensandstein and Knollen-
mergel (Trössingen Formation) are almost entirely
dinosaurian – 95% or more of the fossils are of
dinosaurs (Benton 1986, 1991). This contrasts
sharply with the Lower and Middle Stubensandstein
assemblages, in which dinosaurs are a much smaller
percentage of the fossils collected. However, I
regard this change to dinosaur domination as
largely a local facies/taphonomic effect, not a bio-
chronologically significant event (Hunt 1991). It
seems likely, but not certain, that the Knollenmergel
assemblage is of Apachean age (see below).

In the Lombardian Alps of northern Italy, after
the regional progradation of platform carbonates
during the early-middle Norian (Dolomia Princi-
pale), extensional tectonism produced intraplatform
depressions occupied by patch reefs, turbiditic
debris flows and lagoonal to freshwater facies
(Jadoul 1985; Jadoul et al. 1994). Tetrapods from
these intraplatform strata, the Zorzino Limestone at
the Cene and Endenna quarries in Lombardy, are
the diapsids Endennasaurus and Vallesaurus, the
prolacertiform Longobardisaurus, the rhynchoce-
phalian Diphydontosaurus, the drepanosaurids
Drepanosaurus and Megalancosaurus, the phyto-
saur Mystriosuchus, the aetosaur Aetosaurus, the
pterosaurs Eudimorphodon and Peteinosaurus and
the placodont Psephoderma (e.g. Wild 1989; Pinna
1993; Renesto 2006). In Germany, Mystriosuchus
is well known from the Middle Stubensandstein
and Aetosaurus from the Lower-Middle Stubensand-
stein, so a Revueltian age of the Zorzino Limestone
is certain. The Calcare di Zorzino also crops out
in Austria, where it yields specimens of Langobardi-
saurus and the pterosaur Austriadactylus, a likely
synonym of Preondactylus (Dalla Vecchia 2009;
S. Renesto, written commun. 2009). Also, in Austria,
unpublished specimens of Mystriosuchus are known
fromTotesGebirge(possiblyDachstein) (S.Renesto,
written commun. 2009).

The other Italian Late Triassic tetrapod sites are
in the Forni Dolomite (Dolomia di Forni) in the
Veneto Prealps of northeastern Italy. They yield
the drepanosaurids Drepanosaurus and Megalanco-
saurus, and the pterosaurs Eudimorphodon and Pre-
ondactylus (Dalla Vecchia 1995) and a specimen of
Langobardisaurus under study by S. Renesto
(written commun. 2009). The presence of Eudimor-
phodon supports a Revueltian age assignment.
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Upper Triassic tetrapod assemblages from the
Indian Subcontinent come from the Pranhita–
Godavari Valley of south–central India. Several
summaries (Jain et al. 1964; Kutty 1969; Kutty &
Roychowdhury 1970; Sengupta 1970; Jain &
Roychowdhury 1987; Yadagiri & Rao 1987; Kutty
et al. 1988; Kutty & Sengupta 1989; Bandyopadhyay
& Roychowdhury 1996; Bandyopadhyay & Sen-
gupta 2006) have been published, but other than
the lower Maleri assemblage (see above), relatively
few of the fossils have been adequately documented
in print, forcing me to rely largely on unsubstantiated
genus-level identifications to evaluate the ages of the
tetrapod assemblages. A case in point is the Dhar-
maram Formation, which yields two stratigraphi-
cally discrete vertebrate fossil assemblages (lower
and upper). The stratigraphic range of the lower
assemblage has not been published, and it includes
a phytosaur that Kutty & Sengupta (1989, table 2)
list as Nicrosaurus, aetosaurs, including a so-called
‘Paratypothorax-like’ form, and prosauropod dino-
saurs. Based primarily on the supposed Nicrosaurus
record, I consider the lower assemblage of the Dhar-
maram Formation a possible Revueltian correlative.

Comments. Hunt & Lucas (1993c) suggested that,
perhaps along the lines of the Cliftonian-
Neshanician subdivision used in the Newark Super-
group, the Revueltian merits subdivision, and Hunt
(1994, 2001) subdivided it into three sub-LVFs of
regional utility. Two of these, the Barrancan (early
Revueltian) and Lucianoan (later Revueltian) are
readily correlated in the western USA using
various index fossils (e.g. Heckert & Lucas 2006).

Some of the discussion of the Revueltian has
focused on whether or not it is readily distinguished
from the next younger Apachean LVF (Long &
Murry 1995; Rayfield et al. 2005, 2009). These dis-
cussions are rooted in taxonomic arguments, as the
type assemblages of the Revueltian and Apachean
are stratigraphically superposed in east–central
New Mexico, USA and thus are obviously time
successive.

Typothorax, Aetosaurus and Pseudopalatus-
grade phytosaurs were listed as Revueltian index
fossils by Lucas (1998a). However, recognition of
an older, Adamanian species of Typothorax, T. anti-
quum, by Lucas et al. (2002b) has modified this; it is
the species T. coccinarum that is a Revueltian index
fossil, and this is part of what prompted Hunt et al.
(2005) to redefine the beginning of the Revueltian as
the FAD of T. coccinarum, a decision followed by
Lucas et al. (2007e) and also used here.

Typothorax coccinarum stands as a robust index
fossil of the Revueltian across the Chinle Group.
Indeed, its likely descent from T. antiquum as part
of an anagenetic evolutionary lineage (Lucas et al.
2002b) is significant to the Triassic tetrapod

biochronology in that the beginning of a LVF can
be defined by a true species-level evolutionary
event, not the appearance of a genus-level taxon.

Aetosaurus is one of the most robust index fossils
of the Triassic tetrapod timescale (Fig. 9). Lucas
et al. (1998b) presented a detailed taxonomic revi-
sion based on study of all North American and Euro-
pean specimens. Aetosaurus has a marine record in
the middle Norian of northern Italy (Wild 1989),
and all of its nonmarine records are Revueltian. Cri-
ticism of the use of Aetosaurus, typified by Rayfield
et al. (2005, 2009), is based on the claim that
because Aetosaurus has been portrayed as the ple-
siomorphic sister taxon of other aetosaurs in cladis-
tic analyses (e.g. Heckert & Lucas 2000) it ‘must’
have a long ghost lineage that therefore renders it
useless in biostratigraphy. I regard this as specious
cladotaxonomic reasoning (Lucas et al. 1999a,
2007c, e). Thus, the position of a taxon on a clado-
gram has nothing to do with its biostratigraphic
utility unless all the assumptions of the cladogram –
and the existence of a ghost lineage is nothing more
than an assumption – are brought into the biostrati-
graphic analysis. Indeed, an alternative interpret-
ation of the Heckert & Lucas (2000) cladogram of
aetosaurs, one that views Aetosaurus as a highly
derived, dwarfed and simplified form, would
produce a very different ‘ghost lineage’.

Aetosaurus thus is a taxonomically stable and
robust Revueltian index fossil (e.g. Fraas 1877;
Huene 1921; Walker 1961; Wild 1989; Parrish
1994; Heckert et al. 1996, 2007a; Heckert & Lucas
1998; Small 1998; Lucas et al. 1998b, 1999a;
Heckert & Lucas 2000; Parker 2007).
Pseudopalatus-grade phytosaurs include Pseudopa-
latus, Nicrosaurus and Mystriosuchus, all taxa
restricted to Revueltian time. Like the use of
Rutiodon-grade phytosaurs to identify the Adama-
nian, this is a convenient and concise way to refer
to a group of broadly contemporaneous phytosaur
taxa whose stratigraphic ranges are well established,
but whose genus- and species-level nomenclature
remain in flux (compare, e.g. the differing phytosaur
taxonomies of Ballew 1989; Hunt 1994; Long &
Murry 1995; and Hungerbühler 2002).

Heckert & Lucas (1997) suggested that Revuel-
tosaurus might serve as an index taxon of Revuel-
tian time. At that time Revueltosaurus, which was
known solely from teeth, was considered to be an
ornithischian dinosaur. Parker et al. (2005) docu-
mented associated skulls and postcrania of Revuel-
tosaurus callenderi, demonstrating that that taxon
is actually a crurotarsan archosaur. However, they
noted that, following Hunt (1989), Padian (1990)
and others, the teeth are indeed diagnostic, and
the taxon is valid. Heckert & Lucas (2006) then
showed that in the Chinle Group Revuletosaurus is
restricted to strata of Revueltian age.
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This demonstrates the irrelevance of the
assumed position of a taxon in a phylogeny to bios-
tratigraphy. The changing phylogenetic position of
Revueltosaurus alters neither its biostratigraphic
significance nor its biochronological utility. What
is biostratigraphically important about Revuelto-
saurus is that it is distinctive (easily identified),
relatively common and/or widespread, and known
from a restricted stratigraphic interval. Whether it
is an ornithischian (as previously supposed) or a
crurotarsan (the current phylogenetic hypothesis)
is irrelevant to its biostratigraphic and biochronolo-
gical utility.

Apachean

Definition. The Apachean LVF is the time interval
between the FAD of the phytosaur Redondasaurus
and the FAD of the crocodylomorph Protosuchus
(Fig. 1). Lucas & Hunt (1993a) introduced the
term Apachean LVF to refer to the time equivalent
to the vertebrate fossil assemblage of the Redonda
Formation (Chinle Group) in east–central New
Mexico, USA (Lucas et al. 1985; Hunt 1994; Hunt
& Lucas 1997; Lucas 1998a; Lucas et al. 2001;
Spielmann et al. 2006a, b). Apachean time begins

with the FAD of the phytosaur Redondasaurus.
The end of Apachean time is the beginning of the
Wassonian LVF, which is the FAD of the crocodylo-
morph Protosuchus (Lucas & Huber 2003; Lucas &
Tanner 2007a, b).

Characteristic tetrapod assemblage. The character-
istic tetrapod assemblage of the Apachean LVF is
from the Redonda Formation of the Chinle Group
in Guadalupe and Quay Counties, New Mexico,
USA. The following taxa are present: the amphibian
Apachesaurus, a sphenodontid, a procolophonid,
the phytosaur Redondasaurus, the aetosaur Redon-
dasuchus, the rauisuchian Redondavenator, the
sphenosuchian Vancleavea, a rauisuchian, theropod
dinosaurs and a ?cynodont (e.g. Hunt 1994; Hunt &
Lucas 1993b, 1997; Heckert et al. 2001; Hunt et al.
2005; Spielmann et al. 2006a, b).

Index fossils. The following tetrapod genera are
restricted to Apachean time and are widespread
and/or common enough to be useful as index
fossils: the phytosaur Redondasaurus, the aetosaur
Redondasuchus and the dinosaur Riojasaurus.

Principal correlatives. Principal correlatives of the
type Apachean assemblage are the Whitaker
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quarry in the Rock Point Formation of the Chinle
Group at Ghost Ranch, New Mexico, the Cliftonian
LVF assemblages (in part) of the Newark Super-
group, the Knollenmergel (Trössingen Formation),
time-equivalent upper Arnstadt Formation and the
‘Rhaetian Bonebed’ of the Germanic Basin, the Col-
oradan LVF of Argentina and the tetrapod assem-
blage of the Lower Elliot Formation in South
Africa. Some of the fissure-fill assemblages in the
uppermost Mercia Mudstone Group and/or lower-
most Penarth Group of the United Kingdom
(Fraser 1994; Benton & Spencer 1995; Whiteside &
Marshall 2008) may be Apachean correlatives.
Some of the so-called Rhaetian vertebrate sites in
France, such as Saint-Nicolas-de-Port, may be Apa-
chean correlatives as well (Lucas & Huber 2003).

At Ghost Ranch in New Mexico, the Whitaker
quarry bone bed is dominated by skeletons of the
theropod dinosaur Coelophysis bauri (Colbert
1989). Nevertheless, it also includes the sphenodont
Whitakersaurus, at least one drepanosaur, a rauisu-
chian skeleton (cf. Postosuchus), the sphenosuchians
Hesperosuchus and Vancleavea, the chatterjeeid
Shuvosaurus (¼ Effigia) and the phytosaur Redonda-
saurus (e.g. Hunt & Lucas 1993b; Clark et al. 2000;
Harris & Downs 2002; Hungerbühler 2002; Hunt
et al. 2002; Lucas et al. 2003; Rinehart et al. 2004;
Nesbitt 2007; Lucas et al. 2005, 2007e; Heckert
et al. 2008; Renesto et al. 2009).

In Argentina, the Los Colorados Formation con-
sists of siliciclastic red beds approximately 800 m
thick. Near its base, a single tetrapod fossil – a dicy-
nodont skull, the holotype of ‘Jachaleria’ colorata
Bonaparte 1970 – was collected. The remainder of
the tetrapod fossils from the Los Colorados
Formation are from its middle and upper parts but
have not been stratigraphically organized. The
assemblage includes the turtle Palaeochersis, the
ornithosuchid Riojasuchus, the aetosaur Neo-
aetosauroides, the rauisuchid Fasolasuchus, the
crocodylomorphs Hemiprotosuchus and Pseudhe-
sperosuchus, the prosauropod dinosaurs Riojasaurus
and Coloradisaurus, the theropod dinosaur Zupay-
saurus and the tritheledontid cynodont Chaliminia
(e.g. Bonaparte 1970, 1971, 1978, 1980, 1997;
Lucas & Hunt 1994; Rougier et al. 1995; Arcucci
et al. 2004). The correlative Quebrada del Barro
and El Tranquilo formations also produce prosauro-
pods (e.g. Riojasaurus, ‘Mussaurus’) (Casamiquela
1980; Bonaparte & Vince 1979; Bonaparte &
Pumares 1995). The Los Colorados assemblage
clearly is of Late Triassic age (Arcucci et al. 2004)
and must be post-Ischigualastian. However, its
endemism makes it difficult to correlate precisely.
I tentatively consider it an Apachean correlative
based primarily on its abundant prosauropods.

The age of the tetrapod assemblage from the
Lower Elliott Formation in South Africa has long

been considered Late Triassic. Lucas & Hancox
(2001) reviewed the age of this assemblage, which
is dominated by sauropodomorph dinosaurs, but
also has rare amphibians (a large chigutisaurid), a
possible rauisuchian (Basutodon), the ornithischian
dinosaur Eocursor, a traversodontid (Scaleno-
dontoides) and the characteristic Late Triassic foot-
print ichnogenus Brachychirotherium (Kitching &
Raath 1984; Lucas & Hancox 2001; Butler et al.
2007). This is the ‘Euskelosaurus range zone’ of
Kitching & Raath (1984), the youngest Triassic tet-
rapod assemblage in the Karoo basin. Yates (2003)
re-evaluated the prosauropods of the Lower Elliott
Formation and concluded that most are indetermi-
nate sauropodomorphs or basal sauropods. He
noted similarities of indeterminate prosauropods
from the Lower Elliott Formation to Riojasaurus
from the Los Colorados Formation of Argentina,
and similarities between the basal sauropod Anteto-
nitrus from South Africa and Lessemsaurus from
Argentina (Yates & Kitching 2003). These con-
clusions suggest a Lower Elliott–Los Colorados
correlation, and thus a tentative Apachean age
assignment.

In the United Kingdom, fissure fills such as
Durdham Down in Clifton yield fossils that include
phytosaurs, aetosaurs, dinosauriforms and dinosaurs
(e.g. Fraser 1994; Fraser et al. 2002; Galton 2005,
2007a, b; Whiteside & Marshall 2008). Unfortu-
nately, other than a tentative record of Aetosaurus
based on a single osteoderm (Lucas et al. 1999b),
the fissure fill tetrapods are mostly endemic taxa of
no biochronological significance or cosmopolitan
taxa with long age ranges, such as the sphenodontian
Clevosaurus. Recently, Whiteside & Marshall
(2008), based primarily on the palynoflora, assigned
the Tytherington fissure fill a Rhaetian age, and
extrapolated this age to the other fissures. If this
Rhaetian age is correct, then the fissure fill tetrapods
are of Apachean age. However, as Lucas & Hunt
(1994, p. 340) noted, ‘a single age should not necess-
arily be assigned to the fossils from one fissure
and . . . . individual fossils from the fissures may
range in age from middle Carnian to Sinemurian’.
Therefore, I continue to regard as problematic the
precise age of the Triassic tetrapod assemblages
from the British fissure fills.

Comments. The Apachean is the most difficult
Triassic LVF to correlate globally. This almost cer-
tainly reflects a provincialization of the global tetra-
pod fauna near the end of the Triassic. Some of the
apparent endemism of Apachean land-vertebrate
assemblages may also be due to facies, sampling
and taphonomic biases. Thus, rather than recognize
a global Apachean LVF, it may ultimately be
necessary to recognize two or more provincial
LVFs during this time interval.
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There is no evidence that any part of the Apa-
chean is of Jurassic age. The FAD of the crocody-
lomorph Protosuchus, which defines the beginning
of the next LVF, the Wassonian, appears to corre-
spond closely to the beginning of the Jurassic
(Lucas & Tanner 2007a, b). Thus, Protosuchus
occurs in units assigned an Early Jurassic based on
diverse evidence: the McCoy Brook Formation
(Newark Supergroup), the upper Stormberg Group
of South Africa and the upper part of the Dinosaur
Canyon Member of the Moenave Formation in
Utah-Arizona (Colbert & Mook 1951; Sues et al.
1996; Lucas et al. 2005; Lucas & Tanner 2007a,
b). The Moenave record of Protosuchus is stratigra-
phically superposed above Apachean body fossil
assemblages of the uppermost Chinle Group
(Lucas et al. 1997b, 2005; Lucas & Tanner 2007a,
b). Furthermore, it is correlative to the Lower Juras-
sic conchostracan assemblages from the Whitmore
Point Member of the Moenave Formation (Lucas
& Tanner 2007a; Kozur & Weems 2010). Relatively
recent recognition that Apachean-age strata extend
above the Chinle Group into part of the
Moenave–Wingate (lower Glen Canyon Group)
lithosome has been based, in part, on the occurrence
of a Redondasaurus skull in the lower part of the
Wingate Sandstone in southeastern Utah (Lucas
et al. 1997b; Lucas & Tanner 2007a, b). (Note
that Spielmann et al. 2007a, fig. 8A–B illustrated
a cast of this skull and mistakenly attributed it to
the Revueltian Owl Rock Formation).

Lucas (1998a) listed three Apachean index
fossils: the aetosaur Redondasuchus, the phytosaur
Redondasaurus and the dinosaur Riojasaurus.
Riojasaurus is known from Argentina and may be
present in the Lower Elliott Formation in South
Africa. The Apachean is readily distinguished in
North America by its primary index fossils, Redon-
dasaurus and Redondasuchus. However, some
workers (Long & Murry 1995; Martz 2002) have
questioned the validity of Redondasaurus and
Redondasuchus, proclaiming the former a synonym
of Pseudopalatus and the latter a synonym of
Typothorax. Nevertheless, Heckert et al. (2001)
and Spielmann et al. (2006a, b) reaffirmed the
distinctiveness and validity of Redondasuchus and
Redondasaurus, and Hungerbühler (2002) also
recognized Redondasaurus as distinct from
Pseudopalatus.

Correlation of the LVFs to the Marine

SGCS

Introduction

Records of nonmarine Triassic tetrapods in marine
strata (Lucas & Heckert 2000), palynostratigraphy,
magnetostratigraphy and radioisotopic ages provide

some basis for correlation of the LVFs to the standard
global chronostratigraphic scale (Fig. 10). Neverthe-
less, reliable data for this correlation remain rela-
tively sparse, so the correlation of the LVFs to the
SGCS is still imprecise in many time intervals.

Lootsbergian

The base of the Triassic (¼ Permo-Triassic bound-
ary [PTB], ¼ base of Induan Stage) has been for-
mally defined by the FAD of the conodont
Hindeodus parvus at a global stratotype section
and point (GSSP) located at Meishan in southern
China (Yin et al. 2001). This means it is possible
to attempt to correlate a potential Triassic base in
the nonmarine section to a fixed, agreed-upon
point in the marine timescale.

It is important to ask how the Lootsbergian cor-
relates to the marine PTB in order to establish the
synchrony or diachroneity of marine and nonmarine
events across the PTB. However, such correlation is
not simple, because no sections are known where
strata bearing terrestrial tetrapods can be directly
correlated (say by interfingering lithostratigraphy)
to the marine record across the PTB. Thus, magne-
tostratigraphy, isotope stratigraphy, conchostracan
biostratigraphy and palynostratigraphy have been
used to correlate the nonmarine and marine
records across the PTB. Lucas (2009) provides a
detailed discussion of this correlation, which is
briefly reviewed here.

There is a well documented negative d13C excur-
sion at the PTB in marine sections that closely
coincides with the major extinction that precedes
the formally-defined PTB (e.g. Payne et al. 2004;
Yin et al. 2005, 2007; Richoz 2006). Diverse ana-
lyses indicate that the marine PTB is within the
lower third of a long normal-polarity chron (e.g.
Ogg 2004; Steiner 2006; Hounslow & Muttoni
2010). Palynostratigraphy has also been used by
some to correlate marine to nonmarine sections at
the PTB (e.g. Morante 1996; Looy et al. 1999,
2001; Twitchett et al. 2001; Collinson et al. 2006),
particularly the fungal abundance spike documented
in marine and nonmarine sections that some have
considered to correspond to the PTB marine mass
extinction (e.g. Eshet et al. 1995; Visscher et al.
1996; Steiner et al. 2003).

In the conchostracan biostratigraphy, which is
well correlated with the marine scale, the PTB
coincides with the boundary between the Falsisca
postera Zone and the Falsisca verchojanica Zone
(Kozur 1998a, b, 1999; Bachmann & Kozur 2004;
Kozur & Weems 2010). As in the marine section,
this conchostracan zonal boundary lies in the lower
third of a long normal magnetostratigaphic zone that
straddles the PTB, and it is characterized by a
minimum in d13C in continental beds (Bachmann &
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Kozur 2004; Korte & Kozur 2005b). This minimum
in d13C occurs in continental lakes without facies
changes, and the conchostracan boundary occurs
in the Dalongkou section in northwestern China
close to the HO of Dicynodon (Kozur 1998a, b;
Metcalfe et al. 2009; Kozur & Weems 2010).

At the Meishan section in southern China, a
sharp drop in d13C values coincides with the
maximum amount of marine extinction, and this
mass extinction and carbon isotope excursion are
older than the PTB defined by the lowest occurrence
of the conodont Hindeodus parvus (Fig. 11).
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However, in sections without a weathered boundary
clay (e.g. Shahreza, Iran, and Gerenavár, Bükk Mts,
Hungary) or without a boundary clay, the d13C
minimum lies around the FAD of H. parvus, at the
PTB (Korte & Kozur 2005a). In the Karoo basin
of South Africa, d13C isotope data through the
PTB have been used to correlate to the marine
d13C excursion (MacLeod et al. 2000; Ward et al.
2005). However, these isotope data do not convin-
cingly support the conclusion that the highest occur-
rence of Dicynodon in the Karoo basin is equivalent
to the PTB. Indeed, Tabor et al. (2007) recently pub-
lished an analysis of d13C across the PTB in the
Karoo basin and argued that changes in that record
are driven by local facies changes and are not a
reflection of atmospheric carbon values. Therefore,
the d13C record in the Karoo basin cannot be reliably
correlated to the d13C record in marine strata across
the PTB. However, at Dalongkou in northwestern
China the HO of Dicynodon is close to the PTB
defined and correlated to the marine scale by
conchostracans. Therefore, the minimum in d13C
in the Karoo basin may be a primary signal, and
the HO of Dicynodon is close to the PTB.

The PTB marine extinction took place during
a relatively long interval of normal magnetic
polarity that straddles the PTB, well documented
in a variety of marine sections (Ogg 2004; Steiner
2006) as well as in continental sections (Szurlies
2004; Bachmann & Kozur 2004). In the Karoo
basin there is an interval of normal polarity that
encompasses the highest occurrence of Dicynodon
and is part of the stratigraphically thick (c. 60 m)
interval of low d13C values (Schwindt et al. 2003;
De Kock & Kirschvink 2004; Ward et al. 2005;
Steiner 2006) (Fig. 11). These magnetostratigraphic
data indicate that the lowest occurrence of Lystro-
saurus (in an interval of reversed polarity) is older
than the PTB (as already suggested by King &
Jenkins 1997; Kozur 1998a, b; and Botha & Smith
2007, among others), and that the highest occur-
rence of Dicynodon is closer to the PTB (Fig. 11).

I favour the magnetostratigraphic correlation of
the Meishan and Karoo sections, and it is consistent
with all other available correlation data. The corre-
lation indicates that in the Karoo basin the base of
the Lootsbergian (LO of Lystrosaurus) pre-dates
the main marine extinction event. The LO of

Fig. 11. Magnetostratigraphic correlation of marine PTB section at Meishan, China (based on Yin et al. 2005) to PTB
tetrapod extinction interval in Karoo basin of South Africa (based on Ward et al. 2005). The sections are correlated at
the base of the normal polarity magnetozone that encompasses the PTB. However, they are not scaled to each other
based on time intervals or section thickness, so the only certain point of correlation indicated is the base of the normal
polarity magnetozone that encompasses the PTB. From Lucas (2009). Restoration of Lystrosaurus by Matt Celeskey.
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Lystrosaurus cannot be used to place the PTB in
nonmarine sections; the highest occurrence of
Dicynodon is a much better proxy for the PTB.

Thus, the earliest Lootsbergian is of latest
Permian (Changshingian) age. Correlation of the
rest of the Lootsbergian to at least part of the
marine Induan Stage is clear (Lucas 1998a; Lucas
et al. 2007e). However, whether the Lootsbergian
equates to part, all or more than Induan time is not
possible to determine with the available data. The
Wordy Creek Formation in eastern Greenland has
a record of Lootsbergian amphibians interbedded
with marine late Griesbachian–early Dienerian
(middle Induan) age strata. Thus, the stratigraphi-
cally lowest record of Luzocephalus here is in the
Ophiceras commune ammonite zone, and the genus
extends up through the ‘Proptychites rosenkrantzi
Zone’. Most of the Wordy Creek Formation amphi-
bians come from the younger ‘Anodontophora
fassarensis beds’, which are the youngest Lower
Triassic strata in this section (Nielsen 1935;
Säve-Söderbergh 1935). This indicates a range of
Luzocephalus from late Griesbachian through early
Dienerian (middle Induan), but the other temnospon-
dyl taxa are of middle or late Dienerian (late Induan)
age (Trümpy 1961; Silberling & Tozer 1968; Tozer
1994). Luzocephalus, Tupilakosaurus, and Wetlu-
gasaurus occur in the Vokhmian Horizon of the
Vetlugian Series of the Russian Urals. This fauna
includes Lystrosaurus, an index taxon of the Loots-
bergian land–vertebrate faunachron, so the amphi-
bian records from Greenland establish a middle–
late Induan age for at least part of Lootsbergian time.

In northwestern Madagascar the upper part of
the marine Andavakoera Formation (Dienerian)
yields a diverse assemblage of temnospondyls:
?Benthosuchus, ?Wetlugasaurus, Mahavisaurus,
Aphaneramma, Ifasaurus, Tertrema, Tertremoides,
Trematosaurus, Wantzosaurus and Deltacephalus
(Swinton 1956; Lehman 1961, 1966, 1979). The
Benthosuchus and Wetlugasaurus identifications
are not reliable (Cosgriff 1984; Damiani 2001),
though the amphibians from the Andavakoera
Formation may be of Lootsbergian age. This may
indicate correlation of part of the Lootsbergian
and the Dienerian.

Shishkin (2000, p. 65) asserted that the Lootsber-
gian includes assemblages younger than Induan, but
no credible data support his claim. For example, he
stated (p. 65) that ‘the Hesshanggou assemblage of
China [which Lucas 1998a assigned a Lootsbergian
age] . . . is actually latest Spathian or Spathian–
Anisian in age’. However, there is no direct way
to correlate Hesshanggou Formation red beds in
Shanxi (long correlated by Chinese workers to the
‘Procolophon zone’ of the Karoo: Cheng 1981) to
the SGCS (Lucas 1993a, 1998a, 2001; Lucas et al.
2007e). In another case, Damiani et al. (2000)

reported a generically-indeterminate trematosaurid
jaw from the South African Lootsbergian strata
and claimed it extends Lootsbergian time up to the
late Olenekian, largely because of its resemblance
to Olenekian Trematosaurus. An equally likely
possibility is that Damiani et al. (2000) simply
documented an Induan-age trematosaurid. Thus,
the possibility exists that Lootsbergian time is as
young as early Olenekian, but no reliable data
are known to support a Lootsbergian–Olenekian
correlation.

Nonesian

Cross correlation of the Nonesian to at least part of
the Olenekian is clear because of the occurrence of
the Nonesian index temnospondyl Parotosuchus in
marine upper Olenekian (Spathian) strata in the
Mangyshlak Peninsula of western Kazakstan. Thus,
from Mangyshlak, Lozovsky & Shishkin (1974)
documented Parotosuchus sequester from marine
upper Olenekian (Spathian) strata that yield Tiro-
lites and other ammonites. Parotosuchus is an
index taxon of Nonesian time, and the Kazak
record thus provides a direct Nonesian-late Olene-
kian correlation. Furthermore, a Spathian conchos-
tracan fauna of the Germanic Basin in the
Hardegsen Formation (with Parotosuchus) is well
correlated with marine beds in Hungary (with
Spathian ammonoids) and northern Siberia (Kozur
& Weems 2010).

In the western USA, the Nonesian Torrey For-
mation of the Moenkopi Group overlies the early
Olenekian (Smithian) ammonite-bearing Sinbad
Formation, whereas the Nonesian Wupatki
Member of the Moenkopi Formation is clearly
younger than the late Olenekian (Spathian) Virgin
Limestone (e.g. McKee 1954; Blakey 1974;
Morales 1987; Steiner et al. 1993; Lucas & Schoch
2002; Goodspeed & Lucas 2007; Lucas et al.
2007a). This suggests a Smithian–Spathian (Olene-
kian) age for the Moenkopi Nonesian tetrapods, and
supports a broad Nonesian–Olenekian correlation.

The Sticky Keep Formation in Svalbard yields
amphibians that co-occur here with early Olenekian
(Smithian) ammonites (Buchanen et al. 1965; Tozer
1967). The amphibians are: Sasenisaurus, Peltos-
tega, Aphaneramma, Lyrocephaliscus, Teretrema
and Boreaosaurus (Wiman 1910, 1915; Nilsson
1942, 1943; Cox & Smith 1973). These tremato-
saurs are believed to have been euryhaline amphi-
bians that may have actually lived in marine
environments. They also reflect a high diversity
and abundance of trematosaurs characteristic of
the Nonesian. However, the Svalbard trematosaur
taxa are mostly endemic and thus only provide
stage-of-evolution evidence for an Olenekian–
Nonesian cross-correlation.
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Perovkan

A fairly direct correlation can be made of some
Perovkan tetrapod assemblages to the SGCS
(Lucas & Schoch 2002). Thus, strata of the Röt For-
mation (Upper Buntsandstein) in southwestern
Germany–eastern France are lower Anisian mar-
ginal marine to interbedded nonmarine/marine
facies of well-established age because of their
close physical relationship to the Lower Muschelk-
alk. Indeed, marine facies of the lower Röt contain
early Anisian conodonts, the early Anisian
(Aegean) ammonoid Beneckeia tenuis and age-
diagnostic holothurian sclerites (e.g. Kozur 1993),
and magnetostratigraphic correlation of the Röt
Formation to marine magnetostratigraphy indicates
an early Anisian age (Szurlies 2007; Hounslow et al.
2008). Furthermore, conchostracans of the Röt
correlate with Aegean and lower Bithynian marine
intercalations (Kozur & Weems 2010). The
common amphibian from the Röt Formation, Eocy-
clotosaurus, is an index taxon of the Perovkan found
in both Europe and the western United States (e.g.
Ortlam 1970; Morales 1987; Lucas & Schoch
2002). The Röt records of Eocyclotosaurus thus
provide a Perovkan–early Anisian correlation.

The Gogolin Formation (lowermost Muschel-
kalk) in Polish Silesia yields fragmentary temnos-
pondyl and archosaur fossils that include the types
of Mentosaurus waltheri, Eurycervix posthumus,
and ‘Xestorrhytias perrini’, all of which are indeter-
minate mastodonsaurids, and the rauisuchian Zan-
clodon silesiacus Jaekel, based on a single tooth.
Ammonite biostratigraphy places the Gogolin For-
mation in the lower Anisian (e.g. Kaim & Niedź-
wiedzki 1999). The tetrapod material, however, is
too fragmentary to be of much biochronological
utility. Nevertheless, the available material closely
resembles some of the tetrapods from the Upper
Buntsandstein (Röt Formation) of southwestern
Germany–eastern France, and thus supports a
Perovkan–early Anisian correlation.

Magentostratigraphic correlation of the Perov-
kan Otter Sandstone in Great Britain indicates it is
of late Anisian age (Hounslow & McIntosh 2003).
Abdala et al. (2005) assigned the Perovkan Cynog-
nathus zone C in the Karoo basin to the late Anisian
based largely on the palynological content of its
probable correlatives, such as the Wianamatta
Group in the Sydney basin of Australia. Thus,
there is good evidence that the Perovkan is equival-
ent to most of Anisian time.

Berdyankian

The German section provides the best data for a
Berdyankian–Ladinian correlation. Thus, the Ber-
dyankian taxon Mastodonsaurus giganteus ranges

from the Upper Muschelkalk through the Letten-
keuper, strata of late Ladinian (Longobardian) age
(Schoch 1999).

The lower Ladinian Partnach Formation of
western Austria yielded a temnospondyl jaw frag-
ment that Sander & Meyer (1991) identified as
cf. Cyclotosaurus sp. However, this specimen
could just as well belong to Mastodonsaurus
(cf. Schoch 1999), so it is of limited biochrono-
logical significance.

Stur (1873) reported ?Mastodonsaurus giganteus
from the Lunz Sandstone in the Austrian Alps. This
is an early Carnian (Julian) record, broadly correla-
tive to the German Schilfsandstein. However, I
have examined the material Stur described, and it
is not diagnostic of M. giganteus; it could just as
well belong to Cyclotosaurus. Therefore, this record
also is of limited biochronologic significance.

The Brazilian and Argentinian Dinodontosaurus
assemblages are unambiguously correlated to each
other, and have generally been considered Ladinian
based on flimsy palynostratigraphic evidence (Lucas
& Harris 1996; Lucas 2002). Tetrapod evidence to
correlate the Dinodontosaurus assemblages to the
European Berdyankian is also not robust; it consists
of fragmentary remains of Dinodontosaurus-grade
and Stahleckeria-grade dicynodonts from the
German Muschelkalk and Russian Bukobay For-
mation, respectively, not on shared alpha taxa
(Lucas & Wild 1995; Lucas 1998a; Lucas et al.
2007b). At present, this South American–European
correlation remains weakly supported and merits
further study. This is one area where magnetostrati-
graphy (in South America) will be of assistance.

Thus, all available robust data for correlating
the Berdyankian to the SGCS indicate that it is
equivalent to the late Ladinian. This may indicate
that there is a global gap equivalent to the early
Ladinian in the Triassic tetrapod record.

Otischalkian

There are two records of Otischalkian tetrapod
index taxa in marine strata in Austria that support
an Otischalkian–Carnian correlation:

1. Raibler Schichten, Austria: Koken (1913)
described Metoposaurus santaecrucis from a
conglomeratic sandstone in the upper part of
the Raibler Schichten. This is an early Carnian
(Julian) record, and thus correlates part of the
Otischalkian (index taxon ¼ Metoposaurus) to the
early Carnian.

2. Opponitzer Schichten, Austria: Huene (1939)
described a skull fragment of the phytosaur Parasu-
chus (¼ Francosuchus) from the lower part of the
Opponitzer Schichten (Kalk) near Lunz, Austria.
The occurrence is of late Carnian (Tuvalian) age
(Janoscheck & Matura 1980), but it cannot be tied
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precisely to a particular ammonite zone (Hunt &
Lucas 1991).

In Germany, Otischalkian tetrapods from the
Schilfsandstein are as old as early Carnian (late
Julian). Palynostratigraphy assigns a late Carnian
age to the lower Chinle Group, including the strata
of Otischalkian age, and an early Carnian age to
the oldest Sanfordian strata of the Newark Super-
group (Litwin et al. 1991, 1993; Cornet 1993).
Sequence stratigraphy of the Chinle Group advo-
cated by Lucas (1991, 1993b), Lucas & Marzolf
(1993) and Lucas & Huber (1994) assigns lower
Chinle Group strata to a single sequence, the Shinar-
ump–Blue Mesa sequence. This sequence can be
correlated to a late Carnian marine sequence in
Nevada (Lupe & Silberling 1985; Lucas & Huber
1994), and recent studies of detrital zircons are con-
sistent with these correlations (Dickinson & Gehrels
2008; Dickinson et al. 2009). Magnetostratigraphy
correlates lower Chinle Group strata to the late
Carnian portion of the Newark Supergroup magne-
tostratigraphy (Kent et al. 1995; Molina-Garza
et al. 1996; Muttoni et al. 2004). Therefore, the
Otischalkian clearly is Carnian, equivalent to the
early Carnian and part of the late Carnian.

Adamanian

I have long considered the Adamanian to be of late
Carnian age based on palynostratigraphy, sequence
stratigraphy and magnetostratigraphy (see refer-
ences cited above under marine cross-correlation
of the Otischalkian). In West Texas, Otischalkian
and Adamanian tetrapod assemblages are stratigra-
phically superposed (Lucas 1993b; Lucas &
Anderson 1993a, b, 1994, 1995; Lucas et al. 1993,
1994). Therefore, Adamanian time is younger than
the Otischalkian. Revueltian vertebrates are strati-
graphically above Adamanian vertebrates in
Arizona, New Mexico and Texas. Therefore, Ada-
manian vertebrates are either the youngest Carnian
vertebrates known or the oldest Norian vertebrates
known (or both).

Kozur & Weems (2007, 2010) discussed at length
the biostratigraphic evidence to support a late
Carnian (Tuvalian) correlation of the Adamanian.
This is the concordance of three biostratigraphies
– palynostratigraphy, conchostracan biostratigra-
phy and vertebrate biostratigraphy – that all indi-
cate that the Adamanian is Tuvalian. Particularly
significant is the record in the Newark Supergroup
of eastern North America, where, for decades, paly-
nostratigraphy placed the Carnian–Norian bound-
ary at or just above the base of the Passaic
Formation (at the Warford Member), a placement
supported by conchostracan and tetrapod biostrati-
graphy (and by megafossil plant biostratigraphy:
Ash 1980, 1987) (see summary by Huber et al.

1993a). Correlations to the Chinle Group based on
palynomorphs, conchostracans and tetrapods indi-
cate that the Adamanian LVF is older than the
base of the Passaic Formation. Based on counting
cycles in the Newark, the estimated age of the
Passaic Formation base (and the base of the
Norian) is about 217 Ma (Kent & Olsen 1999), but
in this counting a complete Rhaetian was assumed.
However, according to Kozur & Weems (2005,
2007), most of the Rhaetian is missing in the
Passaic Formation, where only the uppermost pre-
cession cycle of c. 20 000 years yielded uppermost
Rhaetian conchostracans, whereas below these
beds late Norian conchostacans are present.

Recent correlations of Newark magnetostratigra-
phy, however, have been used to argue for a much
older Norian base in the Newark section (Muttoni
et al. 2004), one that would be close to the base of
the Lockatong Formation, with an estimated age
of c. 228 Ma based on Newark cycle counting. Fur-
thermore, in an abstract, Irmis & Mundil (2008)
reported a 206Pb/238U age of 219.2 + 0.7 Ma for
an Adamanian horizon of the Chinle Group in
west–central New Mexico. On face value, the
Chinle date and the interpretation of Newark mag-
netostratigraphy of Muttoni et al. (2004) indicate
that the Adamanian is Norian.

Nevertheless, the correlations Muttoni et al.
(2004) propose between the Newark and the marine
Late Triassic magnetostratigraphy from Pizzo Mon-
dello are fraught with problems, mostly because the
marine section contains far fewer magnetochrons
than does the presumed age-equivalent interval of
the Newark. Furthermore, the correlation has aban-
doned the only well-documented biostratigraphic
datum in the Newark that allows a correlation to
marine strata: the Carnian–Norian boundary at the
approximate base of the Passaic Formation (see
above). Thus, the proposed Pizzo Mondello-Newark
magnetostratigraphic correlation lacks an indepen-
dent biostratigraphic datum by which to correlate.
Furthermore, the Pizza Mondelo marine section is
thin (c. 430 m of limestone-dominated section rep-
resent late Carnian and much of Norian time) in com-
parison to the more than 4-km-thick Newark section.
Therefore, it is not surprising that the Pizzo Mon-
dello section yields a magnetostratigraphic record
that does not directly correspond, in both reversal
frequency and pattern, to the Newark section. I
thus believe there is real reason to question the
reliability of the magnetostratigraphic correlations
advocated by Muttoni et al. (2004).

I maintain a late Carnian (Tuvalian) age for the
Adamanian, choosing biostratigraphic data over
what I judge to be less reliable correlations based
on magnetostratigraphy. As for the date reported in
an abstract by Irmis & Mundil (2008), without sup-
porting data its reliability cannot be fully evaluated.
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However, if it is a reliable age, it dates part of the late
Carnian to c. 219 Ma, which means the base of the
Norian would be younger than 219 Ma, in agreement
with the 217 Ma age suggested by Kent & Olsen
(1999), and the Norian is not as long as concluded
by Muttoni et al. (2004).

Revueltian

Two Italian records are critical to correlation of the
Revueltian to part of the Norian:

1. Zorzino Limestone, Lombardian Alps, Italy:
The Zorzino Limestone (Calcare de Zorzino) has
been correlated to the mid-Norian (uppermost Alau-
nian) Himavatites columbianus ammonite zone
(Jadoul et al. 1994; Roghi et al. 1995). Nonmarine
tetrapods from this unit at the Cêne and Endenna
quarries in Lombardy include the Revueltian index
taxa Mystriosuchus, Aetosaurus and Eudimorpho-
don (Wild 1989; Renesto 2006).

2. Forni Dolomite, Veneto Prealps, Italy: the
Forni Dolomite (Dolomia di Forni) in northeastern
Italy is the same age as the Zorzino Limestone, mid-
Norian (Roghi et al. 1995). Its nonmarine tetrapods
include the Revuletian index taxon Eudimorphodon
(Dalla Vecchia 1995). The Italian records thus
provide direct evidence that at least part of the
Revueltian ¼ middle Norian (Alaunian). I consider
the Revueltian to correlate approximately with the
early-middle Norian, which is consistent with the
Italian data (Lucas 1997a).

Palynostratigraphy, magnetostratigraphy and
sequence stratigraphy suggest the characteristic
Revueltian tetrapod assemblage in the Chinle
Group of New Mexico, USA, is of Norian age
(Lucas 1997a, 1998a). Based on stratigraphic pos-
ition (Huber et al. 1993b; Lucas & Huber 2003),
magnetostratigraphy (Witte et al. 1991; Kent et al.
1995; Muttoni et al. 2004), and palynomorphs
(Cornet 1977), the Neshanician LVF in the Newark
Supergroup of eastern North America is of early to
middle Norian or just of middle Norian age. Strati-
graphic position (Huber et al. 1993b; Lucas &
Huber 1993), magnetostratigraphy (Witte et al.
1991; Kent et al. 1995; Muttoni et al. 2004), and
palynomorphs (Cornet 1977; Fowell & Olsen
1993; Lucas & Tanner 2007b) indicate the Cliftonian
LVF is of late Norian–Rhaetian age. Thus, a Norian
correlation of the Revueltian is certain, with well
supported correlation to the early and middle Norian.

Apachean

Apachean time is post-Revueltian (c. mid-Norian)
and pre-Jurassic. Magnetostratigraphy of the upper-
most Chinle Group in the Four Corners and in eastern
New Mexico (Reeve & Helsley 1972; Molina-Garza
et al. 1996, 2003), correlated to the Newark Super-
group magnetostratigraphy (Kent et al. 1995;

Muttoni et al. 2004; Hounslow & Muttoni 2010,
this volume), also suggests the Apachean is latest
Triassic (‘Norian–Rhaetian’).

Earlier arguments that the Apachean is equival-
ent to the Rhaetian (Hunt 1993; Lucas 1993b,
1998a) cannot be sustained in the light of new
data. These arguments were largely based on a
stage-of-evolution assessment of the Apachean
phytosaur Redondasaurus. This phytosaur is more
derived than the Knollenmergel (late Norian) phyto-
saurs of the German Keuper, so Redondasaurus was
therefore assigned a Rhaetian age. However, the
Norian aetosaur Aetosaurus occurs in Rock Point
strata in Colorado (Small 1998) and Rock Point
strata in New Mexico, and the Rock Point palyno-
morphs suggest a Norian age (Litwin et al. 1991).
Clearly, the Apachean is younger than the Revuel-
tian (early–middle Norian), so I regard it as late
Norian to Rhaetian in age (Lucas et al. 2005,
2007e; Lucas & Tanner 2007a, b).

The stratigraphically highest Apachean assem-
blage from the American Southwest is in the Dino-
saur Canyon Member of the Moenave Formation
and laterally equivalent Wingate Sandstone (Lucas
et al. 2005, 2006; Lucas & Tanner 2007a, b).
There are several compelling reasons to assign a
Late Triassic age to this assemblage: (1) the Apa-
chean phytosaur Redondasaurus is present, and
no phytosaur is known from Jurassic strata; (2)
the footprint ichnogenus Brachychirotherium is
present and not known anywhere from Jurassic
strata; (3) the lower Dinosaur Canyon Member is
laterally equivalent to strata of well established
Late Triassic age (upper Rock Point Formation of
the Chinle Group); (4) the Wingate Formation
basal contact is gradational with underlying Upper
Triassic strata of the Rock Point Formation; and
(5) magnetostratigraphy of the Dinosaur Canyon
interval is reasonably correlated to the magnetostra-
tigraphy of uppermost Triassic strata of the Newark
Supergroup in eastern North America (Molina-
Garza et al. 2003).

Although it is possible to assign the Dinosaur
Canyon assemblage to the Late Triassic, its precise
correlation to the marine timescale is uncertain.
Probably it equates to part or all of Rhaetian time,
simply because the Dinosaur Canyon interval is the
youngest Triassic interval on the Colorado Plateau
and is conformably overlain by strata that apparently
correlate to the earliest part of the Early Jurassic
(Hettangian) (Lucas & Tanner 2007a, b; Kozur &
Weems 2010). This supports a correlation of the
Apachean with the late Norian–Rhaetian.

Triassic Footprint Biostratigraphy

In this volume, Klein & Lucas (2010) present a
Triassic footprint biostratigraphy and biochronol-
ogy that build on, revize and synthesize previous
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efforts, including those of Haubold (1969, 1971,
1984, 1986), Demathieu & Haubold (1972, 1974),
Olsen (1980, 1983), Lockley & Hunt (1995), Hunt
& Lucas (2007a, b), Lucas (2003, 2007a) and Klein
& Haubold (2007). Triassic tetrapod footprints
have a Pangaea-wide distribution; they are known
from North and South America, Greenland, Europe,
North Africa, China, Australia, Antarctica and
South Africa. They often occur in nonmarine Triassic
strata that lack well-preserved body fossils, so their
biostratigraphic utility has been of some interest.

In Triassic strata, several characteristic footprint
assemblages and ichnotaxa have restricted strati-
graphic ranges and thus represent distinct time inter-
vals. Key Triassic footprint ichnotaxa are archosaur
tracks: Rotodactylus, the chirotherian ichnotaxa
Protochirotherium, Synaptichnium, Isochirother-
ium, Chirotherium, Brachychirotherium and gralla-
torids (theropod dinosaur tracks). Nevertheless,
non-archosaur footprints are common, especially
the ichnotaxa Rhynchosauroides, Procolophonich-
nium, Capitosauroides and several dicynodont-
related or mammal-like forms that dominate some
footprint assemblages.

From the temporal distribution pattern Klein &
Lucas (2010) identified five distinct tetrapod-
footprint-based biochrons: (1) dicynodont tracks
(Lootsbergian); (2) Protochirotherium (Synaptich-
nium): also includes Rhynchosauroides and Pro-
colophonichnium (Nonesian); (3) Chirotherium
barthii, also includes C. sickleri, Isochirotherium,
Synaptichnium, Rotodactylus, Rhynchosauroides,
Procolophonichnium, dicynodont tracks and
Capitosauroides (Nonesian–Perovkan); (4) Atrei-
pus–Grallator (‘Coelurosaurichnus’), which also
includes Synaptichnium, Isochirotherium,
Sphingopus, Parachirotherium, Rhynchosauroides,
Procolophonichnium (Perovkan–Berdyankian);
and (5) Brachychirotherium, which also inclu-
des Atreipus–Grallator, Grallator, Eubrontes,
Apatopus, Rhynchosauroides, dicynodont tracks
(Otischalkian–Apachean).

Tetrapod footprints are thus useful for Triassic
biostratigraphy and biochronology, but, compared
to the tetrapod body fossil record with eight bio-
chrons, the five footprint-based biochrons provide
less temporal resolution. Nevertheless, in nonmar-
ine Triassic strata where body fossils are rare,
footprints can be useful for biostratigraphy and
biochronology.

Conclusion

The global Triassic timescale based on tetrapod
evolution developed in the 1990s has been criticized
because of: (1) perceived problems with the alpha
taxonomy of some of its index fossils; (2) possible
temporal overlap of the Nonesian and Perovkan

LVFs; (3) changes and additions to the stratigraphic
ranges of some index taxa; and (4) perceived pro-
blems of correlation to the SGCS.

Taxonomic disagreements lie at the heart of
many arguments over biostratigraphy, but I
believe that the extensive taxonomies developed
for many of the Triassic index taxa, especially tem-
nospondyls, phytosaurs, aetosaurs, dicynodonts and
cynodonts, provide a sound basis for their use in
biostratigraphy. Shifting opinions about taxonomy
of these tetrapods will remain, and that will
always affect correlations based on tetrapod fossils.

Lucas et al. (2007e) resolved the problems of
potential overlap or gaps around the Nonesian–Per-
ovkan boundary by redefining the beginning of the
Perovkan to obviate such problems. Stratigraphic
range extensions and changes are the regular out-
growth of collecting and careful biostratigraphic
study in the field. They always force adjustments
to any biochronological scheme rooted in sound
biostratigraphy. Problems with correlation of the
Triassic LVFs to the SGCS persist largely because
in much of the nonmarine Triassic section few
reliable data are available for correlation to the
marine timescale.

Clearly, we need a nonmarine Triassic tetrapod
biochronology with which to correctly sequence
the history of tetrapod evolution on land. Advances
in the scheme proposed in the 1990s have come
from new fossil discoveries, more detailed biostrati-
graphy and additional alpha taxonomic studies
based on sound evolutionary taxonomic principles.
As the work reviewed here demonstrates, the
global Triassic timescale based on tetrapod biochro-
nology remains a robust tool for both global and
regional age-assignment and correlation.

The synthesis reported here is based on work funded by
the National Geographic Society, DAAD and the Janet
Stearns Memorial Trust. I am grateful for the collaboration
of A. Heckert, P. Huber, A. Hunt, J. Spielmann and
L. Tanner on many problems of Triassic tetrapod taxonomy
and biostratigraphy. I thank A. Heckert, H. Kozur, J. Ogg,
S. Renesto, J. Spielmann and R. Weems for their careful
and helpful reviews of the manuscript.
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Teil I 1998, (7-8), 701–725.

KOZUR, H. W. & BACHMANN, G. H. 2008. Updated cor-
relation of the Germanic Triassic with the Tethyan
scale and assigned numeric ages. Berichte Geologische
Bundesanstalt, 76, 53–58.

KOZUR, H. W. & WEEMS, R. E. 2005. Conchostracan evi-
dence for a late Rhaetian to early Hettangian age for the
CAMP volcanic event in the Newark Supergroup, and
a Sevatian (late Norian) age for the immediately under-
lying beds. Hallesches Jahrbuch Geowissenschaft,
B27, 21–51.

KOZUR, H. W. & WEEMS, R. E. 2007. Upper Triassic con-
chostracan biostratigraphy of the continental rift basins
of eastern North America: its importance for correlat-
ing Newark Supergroup events with the Germanic
basin and the international geologic timescale. New
Mexico Museum of Natural History and Science
Bulletin, 41, 137–188.

KOZUR, H. W. & WEEMS, R. E. 2010. The biostrati-
graphic importance of conchostracans in the continen-
tal Triassic of the northern hemisphere. In: LUCAS,
S. G. (ed.) The Triassic Timescale. Geological
Society, London, Special Publications, 334, 315–417.

KUHN, O. 1936. Weitere Parasuchier und Labyrinthodon-
ten aus dem Blasensandstein des mittleren Keuper von
Ebrach. Palaeontographica A, 83, 61–98.

KUTTY, T. S. 1969. Some contributions to the stratigraphy
of the upper Gondwana formations of the Pranhita–
Godavari Valley, central India. Journal of the Geologi-
cal Society of India, 10, 33–48.

KUTTY, T. S. & ROYCHOWDHURY, T. 1970. The Gond-
wana sequence of Pranhita–Godavari Valley, India,
and its vertebrate faunas. Second Gondwana Sym-
posium Proceedings and Papers, 1, 303–308.

KUTTY, T. S. & SENGUPTA, D. P. 1989. The Late Triassic
formations of the Pranhita–Godavari Valley and their
vertebrate faunal succession – a reappraisal. Indian
Journal of Earth Sciences, 16, 189–206.

KUTTY, T. S., JAIN, S. L. & ROYCHOWDHURY, T. 1988.
Gondwana sequence of the northern Pranhita–
Godavari Valley: its stratigraphy and vertebrate
faunas. The Palaeobotanist, 36, 263–282.

LANGER, M. C. 2005a. Studies on continental Late Trias-
sic tetrapod biochronology. I. The type locality of

Saturnalia tupiniquim and the faunal succession in
South Brazil. Journal of South American Earth
Sciences, 19, 205–218.

LANGER, M. C. 2005b. Studies on continental Late
Triassic tetrapod biochronology. II. The Ischigualas-
tian and a Carnian global correlation. Journal of
South American Earth Sciences, 19, 219–239.

LANGER, M. C. & SCHULTZ, C. L. 2000. A new species of
the Late Triassic rhynchosaur Hyperodapedon from
the Santa Maria Formation of south Brazil. Palaeontol-
ogy, 43, 633–652.

LANGER, M., BONIFACE, M., CUNY, G. & BARBIERI, L.
2000a. The phylogenetic position of Isalorhynchus
genovefae, a Late Triassic rhynchosaur from
Madagascar. Annales de Paléontologie, 86, 101–127.
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shefte, 1999, 568–576.

LUCAS, S. G., HECKERT, A. B. & HUNT, A. P. 2001.
Triassic stratigraphy, biostratigraphy and correlation
in east–central New Mexico. New Mexico Geological
Society Guidebook, 52, 85–101.

LUCAS, S. G., HECKERT, A. B. & HOTTON III, N. 2002a.
The rhynchosaur Hyperodapedon from the Upper
Triassic of Wyoming and its global biochronological

TRIASSIC TETRAPODS 493



significance. New Mexico Museum of Natural History
and Science Bulletin, 21, 149–156.

LUCAS, S. G., HECKERT, A. B. & HUNT, A. P. 2002b. A
new species of the aetosaur Typothorax (Archosauria:
Stagonolepididae) from the Upper Triassic of east–
central New Mexico. New Mexico Museum of
Natural History and Science Bulletin, 21, 221–234.

LUCAS, S. G., ZEIGLER, K. E., HECKERT, A. B. & HUNT,
A. P. 2003. Upper Triassic stratigraphy and biostrati-
graphy, Chama basin, north–central New Mexico.
New Mexico Museum of Natural History and Science
Bulletin, 24, 15–39.

LUCAS, S. G., TANNER, L. H. & HECKERT, A. B. 2005.
Tetrapod biostratigraphy and biochronology across
the Triassic–Jurassic boundary in northeastern
Arizona. New Mexico Museum of Natural History
and Science Bulletin, 29, 84–94.

LUCAS, S. G., LOCKLEY, M. G., HUNT, A. P. & TANNER,
L. H. 2006. Biostratigraphic significance of tetrapod
footprints from the Triassic–Jurassic Wingate Sand-
stone on the Colorado Plateau. New Mexico Museum
of Natural History and Science Bulletin, 37, 109–117.

LUCAS, S. G., GOODSPEED, T. H. & ESTEP, J. W. 2007a.
Ammonoid biostratigraphy of the Lower Triassic
Sinbad Formation, east–central Utah. New Mexico
Museum of Natural History and Science Bulletin, 40,
103–108.

LUCAS, S. G., HUNT, A. P. & SPIELMANN, J. A. 2007b.
A new aetosaur from the Upper Triassic (Adamanian:
Carnian) of Arizona. New Mexico Museum of Natural
and History and Science, 40, 241–247.

LUCAS, S. G., HECKERT, A. B. & RINEHART, L. F. 2007c.
A giant skull, ontogenetic variation and taxonomic
validity of the Late Triassic phytosaur Parasuchus.
New Mexico Museum of Natural History and Science
Bulletin, 41, 222–227.

LUCAS, S. G., SPIELMANN, J. A. & HUNT, A. P. 2007d.
Biochronological significance of Late Triassic
tetrapods from Krasiejów, Poland. New Mexico
Museum of Natural History and Science Bulletin, 41,
248–258.

LUCAS, S. G., HUNT, A. P., HECKERT, A. B. &
SPIELMANN, J. A. 2007e. Global Triassic tetrapod
biostratigraphy and biochronology: 2007 status. New
Mexico Museum of Natural History and Science
Bulletin, 41, 229–240.

LUPE, R. D. & SILBERLING, N. J. 1985. Genetic relation-
ship between lower Mesozoic continental strata of the
Colorado Plateau and marine strata of the western
Great Basin: significance for accretionary history of
Cordilleran lithotectonic terranes. In: HOWELL,
D. G. (ed.) Tectonostratigraphic Terranes of the
Circum–Pacific Region. Circum–Pacific Council for
Energy and Mineral Resources, Los Angeles,
263–271.

LYDEKKER, R. 1882. On some Gondwana labyrintho-
donts. Records of the Geological Survey of India, 15,
24–28.

MACLEOD, K. G., SMITH, R. M. H., KOCH, P. L. &
WARD, P. G. 2000. Timing of mammal-like reptile
extinctions across the Permian–Triassic boundary in
South Africa. Geology, 24, 227–230.

MAGANUCO, S. & PASINI, G. 2009. A new specimen of
trematosaurian temnospondyl from the Lower Triassic

of NW Madagascar, with remarks on palatal anatomy
and taxonomic affinities. Atti Societi Italiani Scienze
Museo Civico Storia Naturale Milano, 150, 91–112.

MARTZ, J. W. 2002. The Morphology and Ontogeny of
Typothorax coccinarum (Archosauria, Stagonolepidi-
dae) From the Upper Triassic of the American South-
west. MSc thesis, Texas Tech University, Lubbock.

MARTZ, J. W. & SMALL, B. J. 2006. Tecovasuchus chat-
terjeei, a new aetosaur (Archosauria: Stagonolepidi-
dae) from the Tecovas Formation (Carnian, Upper
Triassic) of Texas. Journal of Vertebrate Paleontol-
ogy, 26, 308–320.

MCKEE, E. D. 1954. Stratigraphy and history of the Moen-
kopi Formation of Triassic age. Geological Society
of America Memoir, 61, 1–133.

MEHL, M. G. 1928. The Phytosauria of the Wyoming
Triassic. Denison University Bulletin, Journal of the
Scientific Laboratories, 23, 141–172.

METCALFE, I., FOSTER, C. B., AFONIN, S. A., NICOLL,
R. S., MUNDIL, R., WANG, X. & LUCAS, S. G.
2009. Stratigraphy, biostratigraphy and C-isotopes of
the Permian–Triassic non-marine sequence at Dalong-
kou and Lucaogou, Xinjiang Province, China. Journal
of Asian Earth Sciences, 36, 503–520.

MILNER, A. R. & SCHOCH, R. R. 2004. The latest meto-
posaurid amphibians from Europe. Neues Jahrbuch
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Buntsandstein des nördlichen Schwarzwaldes. Neues
Jahrbuch für Geologie und Paläontologie Monat-
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tilia, Thecodontia). Publicaciones de la Museo
Ciencia Naturale Mar del Plata, 1, 73–114.

REIG, O. A. 1963. La presencia de dinosaurios saurisquios
en los ‘Estratos de Ischigualasto’ (Mesotriásico
superior) de las provincias de San Juan y La Rioja
(República Argentina). Ameghiniana, 3, 3–20.

RENESTO, S. 2006. A reappraisal of the diversity and bio-
geographic significance of the Norian (Late Triassic)
reptiles from the Calcare di Zorzino. New Mexico

Museum of Natural History and Science Bulletin, 37,
445–456.

RENESTO, S., SPIELMANN, J. A. & LUCAS, S. G.
2009. The oldest record of drepanosaurids (Reptilia,
Diapsida) from the Late Triassic (Adamanian
Placerias quarry, Arizona, USA) and the stratigraphic
range of the Drepanosauridae. Neues Jahrbuch für
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Abhandlungen, 246, 1–35.

SCHOCH, R. R. 2008. The Capitosauria (Amphibia): char-
acters, phylogeny, and stratigraphy. Palaeodiversity,
1, 189–226.

SCHOCH, R. R. & MILNER, A. R. 2000. Stereospondyli.
Encyclopedia of Paleoherpetology, 3B, 1–203.

SCHOCH, R. R. & WERNEBURG, R. 1999. The Triassic
labyrinthodonts from Germany. Zentralblatt für Geo-
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d’Études Gı̂tes Mineraux, 921, 1–37.

TOZER, E. T. 1967. A standard for Triassic time. Geologi-
cal Survey of Canada Bulletin, 156, 1–103.

TOZER, E. T. 1994. Canadian Triassic ammonoid faunas.
Geological Survey of Canada Bulletin, 467, 1–663.

TRIPATHI, C. 1961. On the remains of Lystrosaurus from
the Panchets of the Raniganj coalfield. Records of the
Geological Survey of India, 89, 407–419.

TRIPATHI, C. 1969. Fossil labyrinthodonts from the
Panchet Series of the Indian Gondwana. Palaeontolo-
gica Indica New Series, 38, 1–45.

TRIPATHI, C. & SATSANGI, P. P. 1963. Lystrosaurus
fauna from the Panchet Series of the Indian Gondwana.
Palaeontologica Indica New Series, 37, 1–53.
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