УДК 551.782.21

палеовиология

А. И. СУЛАДЗЕ

Қ ВОПРОСУ ОБ УСЛОВИЯХ СЕДИМЕНТАЦИИ РАННЕПЛИОЦЕНОВЫХ ОТЛОЖЕНИЙ РАЙОНА г. ЕВПАТОРИЯ

(Представлено академиком Л. Ш. Давиташвили 31.5.1976)

Палеонтологический материал позволил Л. Ш. Давиташвили [1] высказать соображение о биономии озерно-морского бассейна начала понтического века и об экологии населявших этот бассейн моллюсков. Отложившиеся в указанном бассейне породы были выделены названным автором [2] в качестве евпаторийского горизонта, который представлен в окрестностях г. Евпатория толщей оолитового известняка и характеризуется вертикальными столбчатыми пустотами заведомо растительного происхождения.

В настоящем сообщении даются результаты изучения оолитов евпаторийского горизонта методами точных исследований.

Химический состав оолитов (%), определенный аналитиком Б. И. Кобиашвили (Геологический институт АН ГССР), иллюстрируется нижеследующей таблицей:

Местоноло- жение в разрезе	SiO ₂	${ m Al_2O_3}$	Fe₂O₃	FeO	MnO	MgO	CaO	Влажность	Потери при прокалива- нии	Сумма
По до шва	0,82	0,89	0,10	0,17	0,14	1,01	53,73	0,14	41,77	98,77
Середина	1,19	0,56	0,71	0,08	0,15	1,18	53,65	0,19	41,51	99,22
Кровля	0,75	0,11	1,12	0,07	0,26	1,36	53,94	0,21	41,53	99,35

Проведенное нами рентгенографическое и электронпомикроскопическое исследование самих зерен оолитов, карбонатность которых превышает 97%, показало, что они сложены кальцитом (рис. 1, рис. 2). Этим подтверждается существующее положение, согласно которому из известковых оолитов все современные оолиты построены арагонитом, а все древние — кальцитом [3]. Был осуществлен и их термографический анализ.

С целью детального минералогического исследования оолитов их нерастворимый остаток также был подвергнут нами рентгенографическому и электронномикроскопическому изучению, показавшему, что он представлен преимущественно метагаллуазитом (рис. 1, рис. 3). Есть основание полагать и наличие некоторого количества галлуазита, который, по всей видимости, первоначально имелся в осадке. Однако вследствие дегидратации он перешел в метагаллуазит. Морфология частиц метагаллуазита находится в прямой зависимости от того, насколько интенсивно происходит переход галлуазита в метагаллуазит

из-за потери межслоевой воды [4]. На электронной микрофотографии (рис. 3) видны частицы неправильной формы различных размеров, образованные в результате расщепления галлуазитовых трубок. В числе

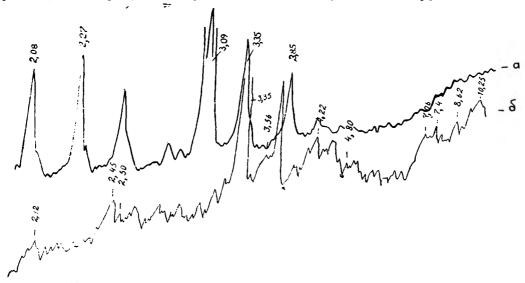


Рис. 1. Дифрактограммы: а — верен оолитов, б — перастворимого остатка оолитов

местонахождений галлуазита указывается и среда, богатая органическими кислотами [5], которая должна была иметь место и в нашем случае при наличии богатой прибрежной растительности, давшей упомя-

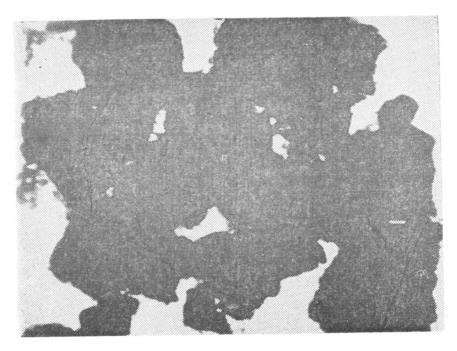


Рис. 2. Электронная микрофотография кальцита оолитов (ув. \times 13000)

нутые в самом начале трубчатые пустоты. В пользу этого говорят и факты массового растворения раковин моллюсков в исследуемых отложениях.

Данные по изотопному составу углерода и кислорода оолитов, полученные в лаборатории абсолютного возраста ГЙН АН СССР благодаря любезному содействию Н. В. Ренгартен, выраженные по отношению к общеупотребительному стандарту PDV в виде $\delta^{13}\%_0$ и $\delta^{18}\%_0$ и равные соответственно —2,5 и —6,1, указывают на образование карбоната в теплых условиях при некотором опреснении [6], что согласуется с уже существующим мнением относительно солености евпаторийского бассейна [1].

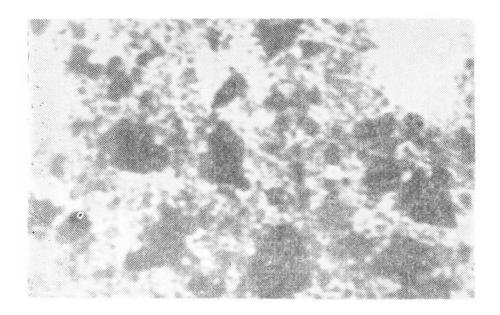


Рис. 3. Электронная микрофотография нерастворимого остатка оолитов (ув. \times 13000)

Величина рН, равная 8,05, очевидно, отражает ту слабую щелочность среды, при которой происходило осаждение карбоната кальция, когда «организмы при минерализации пентона подщелачивали среду путсм выделения аммиака», что находит свое подтверждение в экспериментах, показывающих образование оолитов карбоната кальция таким путем, и в которой организмы, возможно, разрушали кальциевые соли органических кислот с их окислением до углекислоты, опятьтаки с садкой карбоната кальция [7].

В заключение необходимо указать, что в отечественной и зарубежной литературе, посвященной вопросам как палеобиологических, так и геологических исследований, неоднократно подчеркивалось значение биологических факторов при осадконакоплении [8, 9]. Наше сообщение является попыткой показать возможность восстановить, хотя бы в общих чертах, некоторые особенности, в том числе и палеобиологические, условий, которые имели место в раннеплиоценовом бассейне седиментации толщи оолитового известняка в окрестностях нынешнего города Евпатория.

Академия наук Грузинской ССР Институт палеобиологии

ᲞᲐᲚᲔᲝᲑᲘᲝᲚᲝᲑᲘᲐ

Ა. ᲡൗᲚᲐᲫᲔ

Ქ. ᲔᲕᲞᲐᲢᲝᲠᲘᲘᲡ ᲠᲐᲘᲝᲜᲘᲡ ᲐᲓᲠᲔᲞᲚᲘᲝᲪᲔᲜᲣᲠᲘ ᲜᲐᲚᲔᲥᲔᲑᲘᲡ ᲡᲔᲓᲘᲛᲔᲜᲢᲐᲪᲘᲘᲡ ᲞᲘᲠᲝᲑᲔᲑᲘᲡ ᲡᲐᲙᲘᲗᲮᲘᲡᲐᲗᲕᲘᲡ

რეზიუმე

განხილულია ის პირობები, მათ შორის პალეობიოლოგიური, რომლებსაც ჰქონდა ადგილი ადრეპლიოცენური ნალექების სედიმენტაციის დროს.

PALAEOBIOLOGY

A. I. SULADZE

ON THE SEDIMENTATION CONDITIONS OF EARLY PLIOCENE DEPOSITS OF THE ENVIRONS OF EUPATORIA

Summary

Conditions, including palaeobiologic, under which sedimentation of Early Pliocene deposits in the environs of the modern town of Eupatoria took place, are considered in the present paper.

ლიტერატურა — ЛИТЕРАТУРА — REFERENCES

- 1. Л. Ш. Давиташвили. Сб. «Проблемы палеонтологии», т. 2—3. М., 1937, 574—580.
- 2. Л. Ш. Давиташвили. Информ. сб. НГРИ, 2. М., 1933, 113.
- 3. Э. Т. Дегенс. Геохимия осадочных образований. М., 1967, 122.
- 4. Т. Ф. Бейтс, Ф. А. Хильдебранд, А. Свайнфорд. Сб. «Вопросы минералогии глин». М., 1962, 27—31.
- 5. А. Г. Бетехтин. Курс минералогии. М., 1961, 447.
- 6. Э. М. Галимов. Геохимия стабильных изотопов углерода. М., 1968, 130
- 7. С. И. Кузнецов. Микрофлора озер и ее геохимическая деятельность. Л., 1970, 390—391.
- 8. Л. Ш. Давиташвили. Труды Сектора палеобиологни АН ГССР, т. 3, Тбилиси, 1956, 37.
- 9. Р. В. Фэйрбридж, Д. В. Чилингар, Г. Д. Биссел. Сб. «Карбонатные породы», т. I, М., 1970, 38.